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Abstract 

Optical hand tracking technologies in Virtual Reality (VR) offer an exciting new method of 

human-computer interaction. Among the applications being explored, its use for education holds great 

promise. Gesture recognition systems are in development, but none have yet proven to support 

existing gesture collections such as American Sign Language (ASL). Fingerspelling is central to ASL 

and is often a challenge to ASL learners, so digital tools could assist them in the acquisition of this 

skill. This paper explores the use of a virtual reality serious game which utilizes optical hand tracking 

to teach the ASL alphabet.  The question is posed whether the use of such a game will improve a 

player’s ability to fingerspell.  

The new “ASL Fingerspeller” game was developed for the Oculus Quest using state of the art 

software and hardware, the latest of which came to market in February 2020. The game utilizes a 

simple sign recognition system which defines a sign as finger positions and wrist orientation and is 

customizable to each player. The game challenges the player to fingerspell names and places using the 

ASL alphabet. 

Evaluation evidence confirmed that the game was able to successfully teach the ASL alphabet to 

participants in the research and improved their fingerspelling ability over a short period of time. 

Online users and in-person research participants enjoyed playing the game and thought it to be a 

useful learning tool. Results from extended testing saw an average improvement in sign production 

rate of 60 percent within five uses of the game. Testing showed areas for the game’s improvement 

including improving the capability to detect signs with crossed or hidden fingers. These results are 

illustrative yet with the caveat that since testing of the game was limited by Covid-19 related 

restrictions, sample sizes were statistically insignificant. 

The research demonstrates the potential use of hand tracking for educational purposes. The 

technology is not yet capable of supporting full ASL vocabulary but can support most signs of the 

alphabet. The game may not promote development of fingerspelling skills in the same manner native 
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signers learn the skill, but it can be used as a starting point for new learners. Further research could 

explore the inclusion of more advanced gesture recognition systems, especially those that recognize 

dynamic gestures.  

This research is some of the first conducted using the Oculus Quest’s hand tracking technology, 

and its application towards education. The methods in this study could be used as an example for 

further research in the fields of hand tracking games, games about ASL education, and simple gesture 

recognition systems. As the technology develops, including becoming even more user-friendly and 

affordable, this project illustrates that the opportunities for new applications are extensive and 

exciting.
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Definitions and Abbreviations 

Term Definition 

American Sign Language (ASL) A non-verbal language used largely by the Deaf 

and Hard-of-Hearing community in North 

America. Vocabulary of ASL is made of hand 

gestures and facial expressions.  

Application Programming Interface (API) A software interface which gives the developer 

access to a set of functions 

Augmented Reality (AR) A system in which computer-generated imagery 

is overlaid on the user’s view, which gives the 

impression of a digitally augmented space 

Bone A point on the hand tracked by the Oculus Quest 

which holds its own positional and rotational 

data 

Degrees of Freedom (DoF) The axes along which a VR headset will track 

motion. 6DoF includes the X, Y, and Z axes for 

translation (movement) (2 degrees per axis), as 

well as the X, Y and Z axes for rotation 

(turning) 

Digital Game-based Language Learning 

(DGBLL) 

Learning a language using digital games 

Extended Reality A term which encompasses technologies related 

to simulated experiences such as virtual reality 

and augmented reality 

Fingerspelling A process in ASL in which words are spelled 

out using the signs for the letters of the English 

alphabet. Fingerspelling is used for names and 

words for which there is no dedicated sign. 

Game-based Learning Learning that occurs through explicit instruction 

when playing a game 

Game-enhanced Learning Learning that occurs through implicit instruction 

when playing a game 

Gesture Recognition The technology by which human hand gestures 

are used as an interface to a computer system 

Global Space The position of an object relative to a fixed 

origin point 

Hand Tracking The technology of tracking the motion and 

rotation of hands for virtual re-creation. 
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Hands Interaction Toolkit (HIT) A subsection of the Unity Integration API which 

allows for hand ray casting and physics 

interactions 

Handshape The positioning and orientation of the fingers 

when producing a sign in ASL. Tall handshapes 

refer to signs with fingers straight or unfolded. 

Short handshapes refer to signs with the fingers 

bent or folded 

Head-mounted Display (HMD) A headset which places screens in front of the 

user’s eyes, used for virtual and augmented 

reality 

Hidden Markov Model (HMM) A neural network algorithm which is commonly 

used in speech recognition systems to find 

“hidden” states (Fok et al., 2015) 

InverseTransformPoint A method of finding an objects local space 

relative to another object 

k-Nearest Neighbour (kNN) A machine learning algorithm used for 

comparison and sorting 

Leap Motion Controller (LMC) An optical hand tracking module that captures 

the movements of the users hands using near-

infrared sensors. (Ultraleap, 2019) 

Local Space The position of an object relative to itself or 

another object 

Multilayer Perceptron (MLP) A feed forward artificial neural network (Mapari 

and Kharat, 2016) 

Near-Infrared A section of the electromagnetic spectrum which 

is invisible to the naked human eye 

Oculus Quest (Quest) A VR HMD released by Oculus in 2018. The 

Quest uses four cameras for spatial tracking and 

offers wireless optical hand tracking 

Oculus Unity Integration An API which allows for the development of 

Quest games using Unity 

Ray Cast A method of checking overlap or intersection. 

One object fires a ray. If the ray hits the other 

objects, the system recognizes the objects as 

overlapping. 

Reddit A social media site which hosts discussion 

boards separated by user interest groups 

Second Language (L2) An individual’s learned but non-native language 

SideQuest An unofficial user-driven platform for Oculus 

Quest games 
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Spawn To generate 

String A data type consisting of a series of characters 

Support Vector Machine (SVM) A machine learning algorithm used for 

classification 

Unity A game engine and development platform which 

offers a real-time physics engine and 

customizable render pipelines. Unity is 

developed by Unity Technologies 

Unreal A game engine and development platform which 

offers a real-time physics engine and 

customizable render pipelines. Unreal is 

developed by Epic Games 

Virtual Reality (VR) The technology of creating a simulated 

experience, modern systems use head mounted 

displays 

XR Interaction Toolkit An API which allows for the development of 

flexible VR games which can be deployed to a 

multitude of platforms 
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1 Introduction 

As virtual reality (VR) technology becomes more readily accessible, the range of possible 

applications of the technology is growing. May 2019 saw the release of the Oculus Quest, one of the first 

commercially available standalone VR headsets to offer six degrees of freedom of motion (see Figure 

1.1). In December of the same year, a software update added hand tracking capabilities to the Quest, 

making it the first VR headset with built-in hand tracking. Optical hand tracking is the process of using 

cameras and sensors to detect the position and rotations of a user's hands (and fingers), and then applying 

these transforms to three dimensional (3D) models of hands inside a virtual environment to mirror the 

user’s real hands. The addition of hand tracking made the Quest a powerful tool for development of 

experimental applications. 

1.1 Application 

One such application of the Quest’s hand tracking is sign language recognition. Sign language uses 

hand poses and gestures as a form of vocabulary. The recognition of such signs could be used for a 

variety of purposes including education, chat rooms, games, etc. This project aims to explore the use of 

optical hand tracking to teach key dimensions of American Sign Language (ASL). The game will focus 

on teaching the ASL alphabet, as well as developing fingerspelling skills. The ASL alphabet consists of 

24 static signs and two dynamic signs, which poses an interesting challenge of discerning between the 

two forms. This project will explore the current capabilities of the Quest’s optical hand tracking with the 

goal of using this technology to teach ASL through a serious game. Through this the strengths and 

weaknesses of the Quest can be assessed. The project will give some insight to how well the Quest’s hand 

tracking fits ASL production and potentially other applications in the future. 

1.2 Hand Tracking Technology 

The Quest’s hand tracking is an important step in the evolution of hand tracking technology. Prior to 

this device coming on the market, the most notable commercial solution was the Leap Motion Controller 

(LMC). That device connected to computers via USB, and Application Programming Interfaces (API) 

made the device compatible with Unity and Unreal for game development. The device could be attached 
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to VR headsets for hand tracking implementation in VR applications. While this solution worked, the 

detection range was narrow and required cables, thereby limiting the freedom of the user. The Quest has 

the advantage of having hand tracking built-in and being untethered, arguably a purer virtual reality 

experience. The LMC has been used in studies to detect American Sign Language signs, however few, if 

any, studies have tested the application in VR or applied the use of sign detection towards education. 

 

Figure 1.1: Oculus Quest VR Headset (Oculus, 2018; Oculus.com) 

1.3 Groups of Interest 

This project may be of interest to several groups. Gesture recognition systems integrated into VR hold 

potential to be used for a multitude of purposes. This project will attempt to use gesture recognition for 

sign language instruction in a serious game. This could prove useful for sign language educators. 

American Sign Language is taught in schools, where the use of educational games is becoming more 

common. Educational games have been shown to provide specific learning advantages, especially in the 

linguistics field. More research is needed to determine if the advantages apply to manual languages such 

as ASL, but this study may show potential for the use of serious games in ASL classrooms. 

ASL is taught largely to two groups: deaf children and their relatives (especially parents). As younger 

generations become more accustomed to immersive tools, they will be well equipped to make use of the 

unique advantages extended reality (XR) offers. Parents may not engage with digital games in the same 

file:///C:/Users/chris/Documents/Serious%20Games%20and%20Virtual%20Reality/Dissertation/Documents/Oculus.com
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way, but still stand to see the benefits of serious games. This project will specifically look at 

fingerspelling, an area of ASL which non-native learners struggle with. A serious game could provide the 

context and motivation a parent needs to make improvements in this area. 

Another group which could take interest in this project is experimental game developers and user 

interface (UI) designers. This project will explore the new design choices posed by the lack of physical 

peripherals or interaction methods. Gesture recognition opens a host of new interaction methods. By using 

hand tracking, the user is left with their hands open to interact with real-life environments, however it 

takes away all the functionality which can be mapped to buttons and joysticks. A gesture recognition 

system could be used in virtual reality games as locomotion method, menu navigation, spell casting, data 

input, etc. VR versions of role-playing and exploration games like Minecraft, Skyrim, or Kingdom Hearts 

could take advantage of such systems. The same system could be applied to user interfaces in augmented 

reality (AR) apps. Apps requiring text input could use a system of ASL fingerspelling to fill such 

requirements. AR headsets could use gesture recognition for functions such as volume control, 

play/pause, closing windows, and other common functions. These functions might be well used in apps 

focused on interior design, digital finger painting, or digital puppetry. As peripheral-free technologies 

become more prevalent, designers will be faced with the challenge of creating natural interfaces, for 

which gesture recognition could be a perfect solution. 

1.4 Structure of this Dissertation 

This dissertation is structured in six parts: 

● Literature Review 

● Materials 

● Methods 

● Implementation Results 

● Evaluation 

● Conclusion 

The literature review discusses previous research conducted in areas pertinent to this study. Materials 

and Methods provides an overview of the development of the ASL Fingerspeller game. Implementation 
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results describe the finished ASL fingerspelling app and its functionality and gameplay. Evaluation 

discusses feedback, testing, and efficacy of the game. Finally, the conclusion summarises findings, 

highlight achievements, and point out areas for improvement and future work. Ethical approval to carry 

out this research was given by Dr. Daniel Livingstone in accordance with the ethical guidance set by The 

Glasgow School of Art.
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2 Literature Review 

Digital games have quickly become one of the most popular recreational activities across the globe. 

Since the rise of mobile technologies, games have become more accessible than ever. Digital games are 

played on PCs, consoles, handheld devices, mobile phones, and VR headsets. As games have become 

more accessible and more prevalent, educators have explored the possibility of exploiting games for 

educational purposes. Sykes (2018) points out that games designed to encourage self-improvement have 

become popular, such as Pokémon Go for walking and community building. The success of such games 

shows the potential for digital games to be used for educational purposes.  

2.1 Digital Game Based Language Learning (DGBLL) 

Reinhardt and Sykes (2012) make a case for the use of games in education. They argue that learning 

can be game-enhanced, or game-based. Game-enhanced learning refers to implicit instruction when 

players pick up the knowledge or skills as they play without being made aware of their learning 

(Reinhardt and Sykes, 2012). Players may learn the content to enhance the gameplay, rather than play the 

game specifically to learn the content. Games such as Portal 2 can promote learning of puzzle solving and 

teamwork but are not explicitly designed to teach these skills. Game-based learning refers to the explicit 

instruction given through games designed to teach a specific subject (Reinhardt and Sykes, 2012). These 

games are usually a better fit to be used in classroom settings than commercially developed games. It is 

still unclear if one approach produces more substantial learning than the other and more research is 

needed on that point. Sykes (2018) suggests that as commercial games become more accessible to larger 

audiences, they may provide better learning experiences for more students globally.  

Regardless of whether learning is game-based or game-enhanced, the advantages of learning through 

a game are the same. Sykes (2018) makes the case that digital games are:  

● Customizable 

● Repeatable 

● Offer multiplayer over distance 
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Digital games offer repeatability through short play segments or save states. Short play segments 

mean having the player complete one or two tasks within a time frame, usually under five minutes. This 

lets the player practice the same skills multiple times in one gaming session. Save states are a saving 

system which allows the player to return to a previous point in the game and play it over again. These are 

used in narrative based games, allowing a player to save their progress and return to key points in the 

game, repeating scenarios to extract more information each time.  

In addition to these advantages, Reinhardt and Sykes (2012) put forward five pedagogical advantages 

of education digital games: 

● Learner-directed goal orientation 

● Opportunities for interaction with the game, through the game, and around the game 

● Just-in-time, individualized feedback 

● Relevant narrative and context 

● Motivation  

One of the most important of these is just-in-time, individualized feedback. A key feature of digital 

games is the player being informed when they make mistakes and are then encouraged to rectify them 

quickly. This is applicable to language learning, where mistranslations can cause discrepancies (Reinhardt 

and Sykes, 2012) 

Motivation is also an important aspect of DGBLL. Games which properly embody learning into 

enjoyable mechanics can foster motivation to play the game more. This is difficult to achieve and is a 

mark of excellent game design (Reinhardt and Sykes, 2012). 

A collective of researchers from institutes in Taiwan (Hung et al., 2018) reviewed 50 studies on 

DGBLL and discovered trends which give us indications of the state of the field. The key findings were: 

● Most DGBLL games are custom built by researches for use in studies 

● The most common platform for such games was PC 

● English was the most common focus of DGBLL 

● Test samples were mostly made up of university students 
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Studies using custom built games have tended to yield findings that suggest DGBLL games are 

pedagogically effective, yet the same conclusion cannot be drawn about commercially released 

educational games. PC is likely the most used platform as PCs are accessible and familiar to most 

participants. Further study is needed to draw conclusions about pedagogical efficacy of games played on 

alternative consoles.  

The use of DGBLL for Sign Language instruction is not novel. Researchers from the University of 

Tunis conducted a study using a PC game designed to teach Tunisian-Arabic Sign Language to children. 

The participants (children) mostly reported that the game seemed useful and was satisfying (Bouzid et al., 

2016). They unanimously reported that the game was easy to use and learn from. Researchers noted that 

the children enjoyed the presence of a signing avatar. The enjoyment of a flat screen memory matching 

game could be a positive indication for participants to enjoy a virtual reality game in which a player can 

use their own hands. This study did not test pedagogical efficacy, so conclusions about pedagogical 

effects of DGBLL Sign Language games cannot be drawn. While the sample size for this study was 

statistically insignificant and the game focused on Tunisian-Arabic Sign Language, it shows potential for 

the usefulness and satisfaction of a VR ASL game. 
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Figure 2.1: The ASL Fingerspelling Alphabet (NIH, 2019; NIDCD.NIH.gov)  

https://www.nidcd.nih.gov/health/american-sign-language
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2.2 ASL Instruction and Fingerspelling Comprehension 

American Sign Language (ASL) is the de facto manual language for the Deaf and Hard-of-Hearing 

(HoH) community in North America. ASL has roots in French Sign Language and is not closely related to 

British Sign Language (Snoddon, 2017; NIH, 2019). A common misconception about ASL is that it is a 

manual translation of English. This is untrue and can be detrimental to an ASL learner’s development. 

ASL has its own grammatical structure and vocabulary which is not equivalent to a 1-for-1 translation 

from English (Snoddon, 2017). It is important to recognize the history and culture of the American 

Deaf/Hard-of-Hearing community and their language. 

One aspect of ASL which does have connections to English is fingerspelling. Fingerspelling is the 

practice of producing consecutive signs representative of English letters to spell out a word. 

Fingerspelling is used to spell names, proper nouns, or English words for which there is no equivalent 

dedicated sign (Snoddon, 2017; NIH, 2019). Each English letter has a manual form (see Figure 2.1). 

Twenty-four are static, and two (letters J and Z) are dynamic, in which the letter is traced with a certain 

fingertip movement. Native signers can produce signs in quick succession, spelling out words at high 

speeds, just as many native English speakers can write or type quickly. Fingerspelling is an area in which 

second language (L2) ASL learners struggle (Quinto-Pozos, 2011; Geer, 2016). 

Research into fingerspelling comprehension conducted by Geer and Keane (2014; 2018) has given 

some insight into how L2 learners develop fingerspelling comprehension skills. When learning the ASL 

manual alphabet, learners are often shown pictures of the static form of the letter. As a result of this, they 

focus on recognizing the canonical held forms of letters, rather than being able to see them made during 

transitions from letter to letter (Keane and Geer, 2014). This can be thought of similarly to having to 

“sound out” a word while reading, rather than being able to recognize a word as a whole. It is thought that 

native signers can recognize whole words from the “shape” of handshapes and the transitions between 

them. “Shape” of a sign refers to the stretch/curl of the fingers. Tall letters have at least one outstretched 

finger (D, U, W). Short letters used curled fingers or closed hands (A, N, S).  
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Geer and Keane (2014) conducted a study using 16 ASL students at the University of Texas at 

Austin, 12 of whom were native English speakers. Each participant was presented with two sequences of 

videos of a person fingerspelling English words. One video blacked out the transitions between canonical 

forms leaving only the static holds of the letter, while the other video blacked out the holds leaving only 

the transitions. Participants were asked to write the word they had just seen fingerspelled. The results 

showed that L2 learners perform much better when shown static signs. They performed better even than 

when shown videos of fingerspelling with no segments removed, indicating L2 ASL learners’ dependency 

on canonical hand forms (Keane and Geer, 2014). 

Geer and Keane have conducted several studies focused on the importance of implicit vs explicit 

instruction. In two experiments of 63 and 80 participants, results showed that L2 learners struggle with 

hand shapes produced in non-perfect form (Keane and Geer, 2014). The most significant of this was the 

recognition of the letters K and P, which differ only by wrist rotation. Multiple participants interpreted a 

spelling as “Kortugal” when the actual word was “Portugal”. Geer (2016) also notes that native signers 

flex their wrist forward when producing the letter Y. This flexion indicates the letter Y, even if the fingers 

do not hit their canonical form (Geer, 2016). Explicit instruction can help L2 ASL learners pick up on 

subtle differences and improve their fingerspelling comprehension skills. Implicit instruction was not as 

significantly impactful in short term learning (Geer, 2016).  

Across North America there are different dialects of ASL and variances in forms. For example, when 

fingerspelling words with an R following a U, some signers will combine the two and a wrist flexion. 

Geer and Keene (2018) found that unless specifically instructed about such variances, participants were 

unable to discern these forms and were unable to recognize the words being fingerspelled. This further 

shows that L2 learners focus on canonical handshapes and that short-term improvement is best fostered 

through explicit instruction. 

These studies from Keene and Geer are important as they highlight some of the issues L2 ASL 

learners struggle with while practicing fingerspelling. The results are particularly interesting as they show 

that L2 learners develop fingerspelling comprehension skills much differently from native signers. Native 
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signers can develop skill through implicit instruction over long periods of time while exposed to other 

signers. Studies exploring the use of implicit instruction on L2 ASL learners over long periods could find 

results contrasting to the results found in Geer and Keene’s studies. 

Digital fingerspelling tools have been in development for over two decades. In 1998, Su and Furuta 

developed an online fingerspelling comprehension tool using VR Modelling Language. The system 

allowed users to input a word and watch a 3D model of a hand spell the word. A system like this could be 

perfect for incorporating into a game designed for fingerspelling comprehension skills. The researchers 

noted that their system was slow, however technological advances over the last 20 years would improve 

this system. (Su and Furuta, 1998) 

2.3 Gesture recognition technology 

A digital game which teaches the player sign language could make use of a system that recognizes 

signs and hand gestures. Research in the field of gesture detection has advanced over the last decade. 

Several solutions exist, most notably motion capture systems, gloves fitted with accelerometers and flex 

sensors, and the Leap Motion Controller (LMC). Of these solutions, the LMC has been most studied by 

academic researchers, likely due to their low cost and ease-of-use. The LMC works using two Near-

Infrared cameras, and three LEDs to detect hands at a range of 20-60cm (Ultraleap, 2019). Software 

Development Kits are available for use of the LMC with both Unity and Unreal, as well as compatibility 

with VR headsets such as the HTC Vive or Oculus Rift.  

Since the release of the LMC in 2012, researchers have explored the application of the device for 

gesture recognition. A notable focus of such research has examined the use of machine learning and 

neural network sorting algorithms. These algorithms are used to compare captured signs against datasets 

of example signs or other captured signs and use the results to refine the calibration of the gesture 

recognition. 

An early study compared a k-Nearest Neighbour (k-NN) to a Support Vector Machine (SVM) 

algorithm in recognizing gestures using an LMC. The k-NN model achieved an average detection 

accuracy rate of 73% while the SVM model achieved 80% (Chuan, Regina and Guardino, 2014). These 
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figures can be compared to a similar study which used a k-NN algorithm and resulted in an average 

detection accuracy rate of 82.5% (Clark and Moodley, 2016). The statistics are respectable for such early 

stages in the technology but showed room for improvement.  

Improvement was found with the incorporation of Hidden Markov Models (HMM). One study 

achieved an 86% average detection accuracy rate when testing 24 ASL signs using an HMM.  

Furthermore, an average accuracy rate of 93.14% was achieved when using an HMM to classify signs 

detected by two LMCs simultaneously (Fok et al., 2015). This result also shows potential for multi-sensor 

systems. While these studies demonstrate the evolution of the field, none were statistically significant. 

One of the most significant studies to date used 146 participants testing 32 static signs of ASL letters 

and numbers with a Multilayer Perceptron (MLP) neural network. It reported an average accuracy rate of 

90% (Mapari and Kharat, 2016). While this study is more statistically significant than others, it is difficult 

to tell if this success comes from a larger test sample, the MLP neural network, or both. Regardless, it 

further demonstrates the prevalence of neural networks in this field. 

A recent literature review of hand gesture recognition techniques (Cheok, Omar and Jaward, 2017) 

highlights some trends seen in the cases previously described. While the field is active and under 

development, no test of statistical significance had yet been carried out, and therefore no system was close 

to commercial readiness. HMMs are used prevalently in dynamic gesture recognition while SVMs have 

been used for static gesture recognition. The study does note that while sign language vocabulary is vast, 

the catalogue of gestures tested is narrow (Cheok, Omar and Jaward, 2017). As the technology 

progresses, neural networks improve, and more tests are carried out the field will approach a viable 

commercial solution to gesture recognition software. Much more work is needed, however, to support full 

sign language integration. 

2.4 Summary 

The literature shows some important points to consider when exploring future uses of the technology. 

Firstly, digital games offer a set of advantages for teaching, especially teaching languages, however this 

research mostly comes from digital games using the PC platform, so the efficacy of digital games on other 
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platforms is yet to be determined. Secondly, American Sign Language is a complex and intricate 

language, just as spoken languages are, and proposes a certain set of challenges for integration in 

language recognition technologies. Thirdly, gesture recognition systems are improving in conjunction 

with hand tracking technologies, but sign language recognition is still in its infancy. The technology still 

faces accessibility issues in terms of hardware, and so commercial, in-home solutions are not yet 

available. Keeping these points in mind, the questions can be posed: 

● Does virtual reality (VR) and optical hand tracking in its current state provide a sufficient 

platform for ASL education? 

● What are the limitations preventing ASL education and communication in VR platforms? 

● Will the use of a serious game improve a player’s ability to use fingerspelling? 

The following study will attempt to answer these questions through the development of a VR serious 

game using hand tracking technology to teach the ASL alphabet and fingerspelling skills.  
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3 Materials 

To evaluate the efficacy of a VR serious game about ASL, the first challenge is to create such an 

application. At the outset of the project, there was no other game developed, to my knowledge, using any 

hand tracking technology with the intent of ASL instruction, hence the progress began from scratch. I set 

out to develop a game to use Oculus Quest’s hand tracking technology to teach the ASL alphabet and 

improve fingerspelling skills. This game should make use of a gesture recognition system to indicate 

when users are producing signs correctly. Through this, a list of recognizable signs will be produced, and 

a list of signs which the system is unable to recognize. Analysis of this list will give insight to the 

strengths and weaknesses of the hand tracking/gesture recognition system. After having users play the 

game, conducting a survey will allow evaluation of the pedagogical efficacy of the game: whether it 

improved fingerspelling skills or not. Through this study, it will be shown what improvements could be 

made to hand tracking technology to better suit use for ASL instruction. 

3.1 Virtual Reality Headsets and Hand Tracking Solutions 

3.1.1 Oculus Quest 

A key piece of equipment for this project is the Oculus Quest. The Quest is a virtual reality headset 

which uses inside-out optical tracking to provide untethered six degrees of freedom (6DoF). 6DoF refers 

to translation through three dimensions, and rotation on three axes. The Quest has four wide-angle, 

monochromatic cameras; one on each corner of the front of the headset. The field of view of each camera 

is angled in such a way that there are overlapping regions, which is crucial for stable spatial tracking. The 

two upper cameras, which are rarely obscured, can track ceilings while the two lower cameras can track 

the floor. All four cameras can be used for tracking walls and other objects. These same cameras are used 

to track the user’s hands. 

3.1.2 Hand Tracking 

Oculus is a subsidiary of Facebook. It was able to source photographic data from millions of devices 

with Facebook owned applications installed. These images were used to train neural networks to 

recognize hands and fingers. The network was so well trained and computationally optimized that the 
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recognition system could be run on mobile processors, such as the Snapdragon 835 in the Quest. Hand 

tracking was released as a beta feature to the Quest in December 2019, along with the API needed for app 

development. The API is regularly updated, and functionality is adjusted frequently.  

3.1.3 Alternative Solutions 

The Quest was selected due to its advantages over other systems such as the Leap Motion Controller. 

The LMC is an accessory to VR headsets, meaning that both the headset and LMC would need to be 

purchased (see Figure 3.1). An LMC retails for roughly $90 (£70) at time of writing, while the two most 

popular compatible headsets, the Oculus Rift and the HTC Vive, retail for roughly $600 (£460) and $700 

(£540) respectively. The Quest base model retails for $400 (£310). Both LMC compatible headsets are 

tethered devices, meaning they are reliant on high power PCs for graphical processing. The Quest is an 

all-in-one device, meaning all processes are executed by the processor in the headset. While this means 

the Quest is computationally much less powerful and less graphically capable than the other two headsets, 

the Quest has the distinct advantage of being wireless, thereby giving the user more freedom of 

movement. Additionally, built-in hand tracking developed and supported by the manufacturer of the 

device makes development easier as the systems work together seamlessly. It is not dependent on an 

additional API to join hand tracking with the operating system, as well as the API necessary for game 

engine integration. 

 

Figure 3.1: HTC Vive Headset with LMC Attached (Ultraleap 2016; Blog.Leapmotion.com)  

http://blog.leapmotion.com/leap-motion-htc-vive-faq/
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3.2 Development Tools 

Development of the game was done on a Windows PC with a Ryzen 2700X processor, RTX 2070 

graphics card, and 16 GB of RAM. 

3.2.1 PC to VR Workflow 

A crucial part of the development process was the use of Oculus Link. Oculus Link is a software 

which allows the Quest to be used as if it were a tethered headset, much like the Oculus Rift S. The 

software is usually used to play PC VR games on Quest. Oculus Link allows for games being run in a 

game development platform to be play-tested on the Quest without having to build and deploy the 

application.  

On February 6, 2020, an update to the Oculus Unity Integration software allowed for Quest hand 

tracking to be used in Oculus Link. This means that data generated at playtime could be accessed on the 

PC, saved, and manipulated for use in development of the game. Without this system, a gesture 

recognition system could not be developed as gestures cannot be saved and given meaning within the 

context of the game. The Oculus Quest 16.0 firmware update broke this functionality on April 13, 2020, 

effectively killing development of the game. Fortunately, an update to Oculus Unity Integration package 

fixed this functionality on April 28th. Development of this project has only been possible for several 

months. 

3.2.2 Game Engine 

The game was developed in Unity. Unity is a game engine and development platform that is free to 

use for non-commercial products and small businesses. Unity boasts several advantages such as a built-in 

physics engine, support for external packages, and several render pipelines. Unity supports scripts written 

in C#, which makes it a flexible platform. One of the greatest advantages of Unity is the Oculus 

Integration package which provides the tools needed to use Quest hand tracking in a game. A similar 

package is available for the Unreal engine, but Unity was chosen due to prior experience with the 

platform.  
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3.2.3 Hand Tracking Compatibility 

The Oculus Integration package provides a VR compatible camera system, hand tracking ability in 

Unity, hand models and hand management. This means the game will automatically detect hands and 

update the hand models each frame. If hand tracking is lost, the hand model is destroyed, and a new hand 

model is generated when tracking is resumed (see Figure 3.2). This removes problems that would 

otherwise take large amounts of work to fix.  

 

Figure 3.2: Hand Tracking Under Occlusion (Oculus, 2019; Developer.Oculus.com) 

Oculus Integration provides data about each hand being tracked. Each hand has a tracking confidence 

level, positions, and rotations for 22 “bones” in the hand, whether each finger is pinching (touching the 

thumb), and how tight the pinch is (open, close to touching, or touching the thumb). The “bones” refer to 

the wrist, each joint in the thumb and fingers, and the thumb and fingertips (see Figure 3.3). These data 

points can be used to classify gestures or signs. It may be important to note that using the Oculus 

Integration package may be falling out of fashion, with many developers favouring the Unity XR 

Interactions Toolkit. The XR Toolkit offers more flexibility and support for multiple headsets and may be 

https://developer.oculus.com/design/hands-design-bp/
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more future proof. However, the XR Toolkit does not offer hand tracking support, so Oculus Integration 

was the only available choice for this project. 

 

Figure 3.3: Oculus Integration Bone ID Legend (GowerGames, 2019; Reddit.com) 

3.2.4 Modelling and Animation 

Modelling and animation for this game was done using Blender. Blender is a free and open-source 

tool used for 3D modelling, animation, and many other processes. Some models were taken from 

Mixamo, a platform owned by Adobe which provides easy rigging and animation. 

https://www.reddit.com/r/OculusQuest/comments/edkp9i/visual_reference_for_hand_tracking_bone_ids/
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4 Methods 

4.1 Planning 

Once the tools have been defined, the project turns to development methods. The first step was to 

develop a game design document. This is a planning document which outlines the gameplay, goals and 

features, mechanics, and art style of the game (see Figure 4.1). Research has shown that L2 ASL learners 

struggle with fingerspelling comprehension, so in the early stages of planning, the possibility of a 

fingerspelling comprehension challenge was considered. This would consist of having the player watch a 

video of a person or 3D avatar fingerspelling a word, and then selecting that word from a list of choices. 

However, due to time constraints, this game mode was dropped from the development plan. Instead, it 

was decided to focus on fingerspelling production and sign recognition, as this better demonstrates the 

strengths and weaknesses of the Quest’s hand tracking.  

 

Figure 4.1: Games Design Document 

Ideas for a fingerspelling challenge included simply presenting a written word to the player and 

asking them to produce the ASL signs for each letter, or presenting the player with a picture and asking 

them to produce the name of the object/animal/etc. This may be more fun but could introduce trouble as 

pictures may be interpreted differently (e.g. rabbit vs bunny) and make the game inaccessible to non-
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English speakers. For this reason, the game deliberately focuses on one player mechanic, sign production. 

This keeps the game simple to understand. 

The art style was kept simple, both for aesthetic and development reasons. Early ideas included toon 

shaders or matte lambert shaders. This game design document proved to be a helpful guide but was 

adjusted to respond to user needs as the game evolved. 

4.2 Sign Detection 

The first challenge of game development was creating a sign detection system. This requires a 

technical definition of what a sign is. For 24 signs of the ASL manual alphabet, a sign is the static 

position and flex of all fingers and thumb, and the rotation of the wrist. As Geer showed in her research, 

wrist rotation is an important part of sign classification, as some signs differ only by wrist rotation, and 

two signs (J, Z) are dynamic.  

4.2.1 Defining a “Sign” 

The Oculus Integration provides global positional and rotational data for each joint in the hand. Using 

this information, a data structure can be created which will hold the position of a certain number of joints 

in the hand, and the rotation of the wrist. This structure can be called a ‘sign’. Positional data of each joint 

can be stored in a list of Vector3s (a data type consisting of three floating point numbers). An important 

aspect is that joint data, by default, is returned in global positioning. It is highly impractical to produce a 

hand gesture in the exact same global position, so instead joint position should be saved and checked 

relevant to the wrist local position, which will always be 0. Rotational data can be stored in the 

Quaternion data type. Wrist local rotation will always also be 0, so it must be saved as a global rotation 

(see Figure B.2). 

4.2.2 Sign Saving and Detection 

To test a sign recognition system, there must first be signs to recognize. Signs could be created 

manually by inputting data, but this is highly impractical as each sign consists of 70 data points. Instead a 

function was written to save the positional data of every joint and the wrist rotation of a specified hand on 
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the frame the function is called. The positional data of each joint is calculated local to the wrist using the 

InverseTransformPoint method (see Figure B.3). This system only saves static signs.  

The next step is devising a method of detecting these signs. A player is unlikely to ever reproduce a 

sign with all joints in the exact same position and wrist rotation as when they saved it, so the system must 

allow the user some variation – referred to as “tolerance”. Each joint’s position is compared iteratively to 

the equivalent joint position of the sign being checked. If any joint is further than the set tolerance, the 

check is stopped. If no joint position fails the distance test, the wrist rotation is checked using a do 

product calculation. This equation compares the two quaternions and returns a value between -1 and 1. -1 

corresponds to completely opposite quaternions, and 1 corresponds to completely similar quaternions. A 

value of 0 corresponds to perpendicular quaternions. The resulting dot product is compared to a rotational 

tolerance value. For easier comprehension, the angle tolerance is subtracted from 1 before comparing 

against the dot product. If the dot product is greater, the sign is considered produced correctly, and 

marked as detected. 

4.2.3 Dynamic Signs 

Just as video is a sequence of still photos, a sequence of still poses could be saved to constitute a 

dynamic sign. Detecting this would be more difficult. Reproducing a motion with accuracy is more 

difficult than producing a single hand pose. The system could check all poses through the motion and 

consider the sign produced correctly if a certain number of poses met the distance threshold. Rather than 

spend time developing and implementing this complex system, I decided to cheat the static sign system I 

already had. Thinking of a dynamic sign as a series of still poses, then there must be a final pose. For the 

sake of the simplicity, the final pose of both dynamic signs was saved so that by producing the whole 

motion, the sign would be detected at the end. 

4.2.4 Sign Detection Implementation 

Implementing the detection system presents several choices. First, should it check the user’s hands for 

signs upon request or continuously? Either is viable but having the system check upon user request may 

prove tedious to the player. If they struggle to produce a sign correctly, they will be requesting a check 
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over and over, reducing the game’s fun and slowing down their production rate. Additionally, requesting 

a check does not mimic real life sign production. Native signers produce signs quickly and sequentially 

without breaks to check if the listener is comprehending each individual letter. So, the “continuously 

checking” option is preferred albeit computationally more strenuous (see Figure B.4). 

The next choice is whether the system should check for any sign, or only the sign expected to be 

produced. Checking for all signs offers the advantage of being able to count how many times signs other 

than the expected sign were produced, providing a form of feedback to the player. Checking all signs on 

all frames means the game is checking a possible maximum of 22 bones, for 26 signs, 60 times a second. 

In testing, the hardware kept up with these demands, so this option was selected as it offers the most 

functionality. 

4.3 Sign Functionality 

For signs to have meaning, as they do in ASL, the game must give each sign its respective function to 

execute when detected. Unity Events were a perfect solution for this. Unity Events are customizable 

functions which can be invoked when needed. One event can hold multiple functions, meaning they are 

flexible and useful for testing purposes. The sign data structure holds a Unity Event, which can be 

customized per sign. This means that signs can be used for purposes other than spelling. Signs can be 

given functions such as changing colours of an object, raising or lowering volume, turning elements of the 

environment off and on, etc. The choice of detecting all signs on all frames also means that signs that are 

not appropriate for the current situation could be detected, and their functions could be executed when it 

is not convenient for the player. To manage this, a spell-checking system was implemented. This 

consisted of a simple comparison of the sign produced to the letter expected (see Figure B.1). 

4.4 Gameplay 

One level of the fingerspelling challenge consists of five words, each randomly selected from 40-50-

word lists, depending on the level. A string is set equal to the word being proposed, which at the start of 

the level is the first word. A null string is created to hold the letters produced by the player. If a player 

were to produce an incorrect letter, that letter would need to be removed from the string. Sign language is 
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not used as a typing mechanism, so there is no natural sign for “backspace” or “delete”. Rather than create 

a sign for this function, which could also be accidentally detected, I chose to implement a spell checker.  

The CheckLetter function compares the letter assigned to the sign against the expected letter of 

the word. If the letter is correct, it is added to the string and the checker moves on to the next letter. If the 

letter is incorrect, it is discarded. Once all letters have been produced correctly, the checker moves on the 

next word and the spelled string is reset to null. Once all 5 words have been spelled correctly, the level 

has been completed and the player can be shown a summary of the gameplay.  

The gameplay summary shows three statistics: 

● Correct letters produced; incremented every time the CheckLetter function returns true 

● Incorrect letters produced; incremented every time the CheckLetter function is returned false 

● Time taken to complete the level 

Two timers ran during the gameplay. The first shows time elapsed since the player was asked to spell 

a new word. Every time the player completes a word, the timer is reset. The second is the level timer. It 

begins when the level starts, ends when the player completes the last word and is shown in the post-level 

summary. Dividing the level timer by the number of correct letters gives a “typing speed”/production rate. 

These are good metrics to assess player improvement over time. 

4.5 User Interface Design 

 

Figure 4.2: Interaction Range (Oculus, 2019; Developer.Oculus.com) 

https://developer.oculus.com/design/hands-design-bp/
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A particularly tricky challenge in game design for hand tracking apps is user interface. Without 

peripherals such as a mouse or controller, there is no familiar way to navigate an interface. Gestures could 

be used to navigate through the game, but requires the players to learn new gestures, on top of the ASL 

alphabet signs. A trial version of the game tested “physical buttons” in close range of the player which 

they can push with their hands (see Figure 4.3). They worked but did not offer haptic feedback. The 

sensation of seeing your hand touch, but not feel a button can be unsettling. 

 

Figure 4.3: Implementation of a "Physical" Button in Early Stages of Development 

Oculus Integration offers a solution called the Hands Interaction Toolkit (HIT) which includes a ray 

casting tool used for far-field interactions (outside of arm’s reach). The ray cast extends from the palm of 

the hand and latches on to designated “buttons”. The user can then “click” on the button by tapping their 

thumb and index finger together (see Figure 4.4). A small script is added to the far-field buttons to 

implement Unity Events functionality. The buttons can change colours when selected, to give the user 

confirmation of their selection. 

 

Figure 4.4: Tap-to-Click System Developed by Oculus (Oculus, 2019; Developer.Oculus.com) 

https://developer.oculus.com/design/hands-design-bp/
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4.6 Finishing Touches 

With a gesture recognition system, spell checker, and interaction method, we have all the tools 

needed to make the game. The game needed a way to teach the player the signs of the ASL manual 

alphabet. A full rigged body model was taken from Mixamo, from which only the hands were used. A 

library of hand poses for each sign, and animations for the letters J and Z were created inside Blender. 

The models were used in both the sign calibration mode, and the practice mode. 
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5 Implementation Results 

This chapter provides a succinct description of the finished ASL fingerspelling app and its 

functionality and gameplay. The game itself consists of four sections: 

I. Main menu 

II. Sign calibration  

III. Practice mode 

IV. Fingerspelling challenge mode 

For easier data handling, the entire game is set in one scene, with minor environmental changes for 

each mode. The environment is deliberately not physically realistic. The space is encapsulated by a white 

skybox with multicoloured spots, at an infinite distance. There is no visible floor or otherwise familiar 

environmental features which would suggest scale of distance. A physically unsituated environment 

removes the player's curiosity to explore. The player is more likely to remain in the starting position, 

which is optimal for gameplay. This abstract space allows the player to focus on the gameplay. 

 

Figure 5.1: Main Menu  
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5.1 Menu 

The game launches into the main menu which consists of four large buttons; labelled “Sign 

Calibrator”, “Practice”, “Level Select”, and “Quit”. Above the main menu is the game title in large letters, 

with hand models above spelling “ASL” (see Figure 5.1). Below the player are two large hands, one left 

and one right, placed, respectively. Below each is a label that reads “Set right hand active” or “Set left 

hand active”. The right hand is red, and the left hand is blue (see Figure 5.2 and Figure 5.3). 

Players notice a beam stemming from each of their palms. These act as a cursor for menu navigation. 

When a beam intersects either hand, the hand turns green. By tapping their thumb and index finger 

together, the player selects which hand the system should use for sign detection. In development builds, 

the active hand is coloured green and the inactive hand is coloured pink. In the final build, a bug prevents 

the hands from always being coloured this way but will be correctly coloured when the palms are facing 

the player’s face.  

 

Figure 5.2: Set Active Hand Menu 
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Figure 5.3: Player Setting the Right Hand as Active 

When the beam intersects any of the four buttons in front of the player, the button turns green to 

indicate that it is being selected (see Figure 5.4). Tapping the thumb and index finger together triggers the 

event tied to the button, just like clicking with a mouse. This tapping as a click function was designed by 

Oculus developers, as touching the thumb and index finger together provides a form of haptic feedback to 

the user. 

 

Figure 5.4: Player Using The Main Menu  
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5.2 Sign Calibration 

Tapping the “Sign Calibrator” button removes the main menu and loads the calibration scene. The 

scene consists of a title which reads “Sign Calibrator”, a hand model and label which show the active 

letter to calibrate, two buttons labelled “previous letter” and “next letter”, a button labelled “Save Sign”, 

and a button labelled “Main Menu” (see Figure 5.5). The player can hold their active hand in the shape 

shown by the model in front of them (see Figure 5.6). Using their inactive hand, they can tap on the save 

sign button. This overwrites the data for that sign with the current position and rotation of the active hand. 

Upon saving, the hand model is updated to the next letter of the alphabet.  

 

Figure 5.5: Sign Calibrator 

If the player wishes to save a certain letter, they may navigate to that letter by using the “previous 

letter” and “next letter” buttons. The J and Z hand models each play the respective animation once upon 

appearing. If the player wishes to see the animation again, they may move to the next letter and then back 

to J or Z. Pressing “next letter” on Z cycles back to A, and vice versa when pressing “previous letter” on 

A. After calibrating all letters, the player may choose to return to the main menu by selecting the “Main 

Menu” button. 
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Figure 5.6: Player Using The Sign Calibrator 

5.3 Practice Mode 

The player may then select “Practice” to disable the main menu and launch the practice mode. The 

practice mode scene consists of 26 hand models, one for each letter of the alphabet, and their respective 

label. Under the letter A is the main menu button. The sign detection system is activated in practice mode. 

When the player correctly produces a sign, the letter will spawn in front of the respective hand model and 

tumble downwards. After five seconds it disappears. Each hand model serves as reference, so the player 

can copy each sign and practice producing the hand form correctly. The spawning letter serves as 

feedback to show that the form is being produced correctly (see Figure 5.7 and Figure 5.8). 

 

Figure 5.7: Practice Mode 
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The sign detection algorithm checks wrist rotation, and wrist rotation can only be saved in global 

space. This means that if the player were to produce any sign but not be facing forward, the sign would 

not be recognized, which in turn means that the player would not be able to face the model of the letter 

they are trying to practice. To solve this problem, wrist rotation is ignored in practice mode. This allows 

the player to produce signs while facing any direction, but it also means that the system will not be able to 

discern perfectly between similar signs such as K and P, or U and H. After practicing until satisfied, the 

player may return to the main menu. 

 

Figure 5.8: Player Using the Practice Mode 

5.4 Fingerspelling Challenge 

The next selection in the list is “Level Select”. This button brings up a new menu with six options: 

“Level 1” through “Level 5” and a main menu button. Selecting any of the level buttons disables this 

menu and activates the fingerspelling challenge scene. The fingerspelling challenge scene consists of a 

level title, a display of the word to spell, a display of the users spelling progress, a timer, a “skip letter” 

button, a “skip word” button, and a main menu button (see Figure 5.9). The sign detection system is 

activated upon the loading of the level. Level 1 consists of common first names, level 2 is US State 

names, level 3 is countries of the world, level 4 is global cities, and level 5 is names of flowers.  
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Figure 5.9: Fingerspelling Challenge 

Each level asks the player to spell five words - such as “TOKYO” and “GERANIUM”. When a 

player produces the correct letter, a positive tone is sounded, and the letter is added to the display in front 

of them (see Figure 5.10). This is immediate positive feedback to the player. Once the player completes a 

word another positive tone is played, and the next word is loaded. Once the player completes the level, a 

positive jingle is played, and the player is presented with the level summary. 

If the player is struggling with a certain letter, they may press the “skip letter” button. This adds the 

correct letter to the word and lets the player move on to the next letter. This letter is not added to the 

count of correct letters produced. If a player is struggling with a word, they may press the “skip word” 

button. This disregards the current word and loads the next word. None of the remaining letters of that 

word are added to the count of correct letters produced. These functions relieve player frustration if the 

game is not detecting signs properly.  

The level summary scene shows the player how many letters they produced correctly, how many 

incorrect letters were detected, and how long (in seconds) it took to complete the level. On the right side 

the level high score from the current play session is displayed. From this scene the player may either 

return to the level select menu to play again or return to the main menu.  
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Figure 5.10: Player Playing the Fingerspelling Challenge 

5.5 Issues 

There are inevitably a few bugs still present in the final build. Ideally each of the player’s hands 

should be pink or green, but when tracking confidence is not high, the hands are coloured grey.  

The ray cast beam latches on to buttons, which helps relieve misclicks to hand instability. All buttons 

in the main menu disappear after clicking, but the beam remains latched to the position of the now 

invisible button. If the player clicks again without moving their hand first, the function will be called 

again. This can be especially detrimental to the game if the player tries to navigate menus with two hands. 

For instance, say the player hovers over “Sign Calibrator” with their right hand, and “Practice” with their 

left hand. Clicking with the right hand will launch the sign calibrator scene, making the “Practice” button 

disappear. However, the left-hand beam will stay latched to this position. Clicking with the left hand will 

launch the practice mode, thereby having both the calibration scene and the practice scene active at the 

same time. These things can be avoided by having the player move their hands after clicking any button, 

but players might forget to do this sometimes.  
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Another “bug” pertains to the scoring system and the timer. The level timer runs from the loading of 

the level until the level summary scene is loaded. The timer does not carry any penalty for selecting the 

“next word” button. This means that the player can select “next word” five times and complete the level 

with a fast time. The game does not differentiate this time from levels that were completed by spelling all 

letters. One solution could be implemented, in that by pressing “next word” a 20 second penalty could be 

added to the level timer. This would be an easy fix to implement, only 2 lines of code, but I had 

overlooked this issue before publishing the game. These bugs are very minor, but conceivably may induce 

some player frustration at certain points.
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6 Evaluation 

This project sought to produce a game with a sign recognition system and hence to determine the 

capabilities and limitations of a hand tracking application for ASL education. There are several 

approaches to evaluate the game’s usefulness and pedagogical efficacy. 

6.1 Approaches 

6.1.1 In-person Medium Scale Testing 

The first approach is in-person, medium scale user testing. This would consist of recruiting twenty to 

thirty participants to play the game one or two times. The testing would take place in an academic setting, 

using dedicated Quest hardware, a PC to record gameplay, and cameras to record the participants hands 

while playing. Participants would likely be fellow university students and staff who would likely have 

experience with VR technologies, and so require less training to play the game. Participants would be 

introduced to the hardware and the game before exploring the features of the game for half an hour. After 

playing the game, the participant would complete a System Usability Scale (SUS) survey and a 

questionnaire to gauge their impression of the game. Such survey data can be used to estimate the 

usefulness of the game. By recording the gameplay and hands of the user, the tracking accuracy can be 

evaluated, as well as signs that do and do not work well with the recognition system. 

6.1.2 Online Testers 

The second approach is release to the public through online platforms. The official Quest store has 

strict content guidelines and does not permit development builds. Fortunately, SideQuest, a third-party 

platform which allows users to upload home-made games and share them with other Quest users, is a 

good alternative. This is the de facto preferred release method for Quest developers and users. Alongside 

this posting, the game can be advertised through popular social media sites. These platforms allow users 

to respond to posts with comments, which can be used for feedback collection. Such feedback will show 

what general, non-academics think about using the technology for educational purposes.  
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6.1.3 Extended User Testing 

The third approach is extended user testing. Ideally this would consist of five to ten participants 

reporting to an academic space once a day for one or two weeks. The initial visit would take an hour for 

introductions and set ups, but subsequent visits would take only 20 minutes. In each visit, the participant 

would play each level of the game one time and the results would be recorded (see key metrics in Table 

6.1). By recording these results for each test over a two-week period, player progression can be tracked. 

6.2 Limitations 

Currently, the world is facing an unprecedented global health crisis. Due to the Covid-19 virus, 

circumstances are abnormal and physical interaction is limited. I had to leave the Glasgow School of Art 

and return to the USA, so access to hardware was shut off. There is a responsibility to adhere to health 

guidelines. For these reasons, the first approach of medium-scale in-person testing is not possible. Having 

multiple people use one headset poses serious health risks in current times. Instead, the second approach 

and a modified version of the third approach was used.  

Testing in these circumstances is difficult, and so evaluation will not be as extensive as ideally 

desired. Use of the software is limited to those who own personal Quest headsets. Distribution of the 

game and collection of feedback will be “remote” rather than “in-person”. While this approach is useful, 

it may introduce certain biases and errors. Feedback is entirely self-reporting, so is likely biased to those 

with an interest in hand tracking technology and ASL. However, this could also have the advantage that 

the users have knowledge of systems and can offer constructive criticism.  

Regardless of limitations due to current health guidelines, the evaluation conducted is a solid 

reflection of practical and analytical knowledge. The processes taken mirror those that would have been 

used in normal circumstances. Data has been gathered and processed in accordance with standard 

academic practice. Results found using these practices are indicative of how results would look with 

further study. Furthermore, extended testing would be easily produced as conditions return to normal. 
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6.3 Feedback from Online Users 

6.3.1 SideQuest 

The game was posted to SideQuest on July 10th, 2020 along with a video tutorial and link to a SUS 

survey. As of July 30, the game has been downloaded over 300 times. Launch numbers are not reported, 

so it is uncertain how many downloaders have played the game. Over two weeks, the game received five 

ratings. Four users rated the game five-stars (out of five), and one rated the game four-stars. All five-star 

ratings noted the usefulness of the game and its potential for application in educational settings. One user 

wrote “Fantastic application. Hopeful to see a full ASL version in the future. I used to practice a little 

ASL fingerspelling but haven't done it in maybe 10 years. After only around 30 mins in and I can already 

do all the signs again and am successfully spelling words at a decent pace.” The four-star rating notes the 

inability of the hand tracking to accurately represent certain signs, specifically ‘R’ and ‘N’. Overall, the 

average rating of the app is 4.8 out of 5. 

6.3.2 Reddit 

A promotional post was submitted to the Oculus Quest forum on Reddit. The post garnered a score of 

487 points, with a 99% upvote ratio. The post received 22 positive comments. 7 of these specifically 

mentioned the game as a useful tool for ASL acquisition. One commenter posted “Holy crap this is 

exciting! When I heard about hand tracking, I instantly thought about how I wanted to learn American 

Sign language!”, while another wrote “Not only will this help spread sign language it’s an amazing 

learning tool.” The remaining fifteen positive comments noted that the game was cool, a good idea, or 

looked enjoyable. Other comments on the post were questions about the gameplay or how to access the 

game. One user offered a suggestion that when the player has trouble producing a certain sign, the game 

should show them how to produce that sign. None of the comments were critical or negative. 

6.3.3 Twitter 

On July 18th, a user responded to the game’s Twitter link with feedback and a video of their 

gameplay. This user describes themselves as deaf. The user reported that they enjoyed the sign calibration 

system and that “it should be standard for any ASL based app.” The user also noted the difficulty of 
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producing the signs for ‘R’, ‘M’, and ‘N’. Finally, the user reported that they struggled with the menu 

implementation and would prefer a physical touch-based menu system.  

The footage uploaded by this user gives valuable insight to the system’s compatibility with native 

ASL use. The user was able to complete two levels, producing all letters requested. The user produced 23 

correct signs in 23.1 seconds on level one, and 40 correct signs in 45.1 seconds on level two. This 

produces the following statistics, seen in Table 6.1. 

Table 6.1: Resulting Statistics of a Play Session from a Native ASL User 

Stat Level 1 Level 2 Average 

Correct letters produced 23 40 31.5 

Correct letters expected 23 40 31.5 

Incorrect letters 

detected 27 63 45 

Time taken per level 23.1 45.1 34.1 

Production Score 1.0000 1.0000 1.0000 

Accuracy 0.4600 0.3883 0.4242 

Ratio 1.1739 1.5750 1.3745 

Production Rate 1.004 1.128 1.066 

 

Results show the user produced signs at a rate of roughly one correct sign per second. This is double 

the estimated natural sign production rate of 0.5 seconds per sign. This suggests that the user had to slow 

down production for the game to recognize each sign properly. Nonetheless, it is a positive finding that 

this user was able to successfully complete two levels at a relatively rapid pace, on what is assumed to be 

the first play session of the game. This indicates that the technology is approaching a state in which it 

could be used for natural sign language detection. 

6.3.4 Online Survey 

Online postings of the game were accompanied with a link to a SUS survey and an open response 

questionnaire. The SUS survey consists of 10 questions to determine the usability of the game by players' 
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opinions. Each question has five possible responses ranging from “strongly disagree” (-2) to “strongly 

agree” (2), with “neither agree nor disagree” at centre (0).  

Response to the survey was voluntary. To access the survey, users must go to my personal website. A 

reminder to take the survey was placed in the game, and a link was provided in posts on every platform. 

Despite achieving 300 downloads and a 4.8-star rating, only two users responded and completed the 

survey in full – a slightly disappointing response rate. While this sample size is statistically insignificant, 

the consistency between answers, shown in Table 6.2, suggests how results from further testing may 

appear. 

Table 6.2: SUS Survey Responses 

Question User 1 User 2 

I think that I would like to use 

this system frequently 2 1 

I found the system unnecessarily 

complex -1 -1 

I thought the system was easy to 

use 1 2 

I think that I would need the 

support of a technical person to 

be able to use this system -1 -2 

I found the various functions in 

this system were well integrated 1 1 

I thought there was too much 

inconsistency in this system -2 -1 

I would imagine that most people 

would learn to use this system 

very quickly 2 2 

I found the system very 

cumbersome to use -1 -1 

I felt very confident using the 

system 1 1 

I needed to learn a lot of things 

before I could get going with this 

system -1 -2 
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As these results show, both users found: the game easy to use; the functions in the game were well 

integrated; they would like to play the game frequently; and they felt confident using the system. The 

users both disagreed: the game was unnecessarily complex; they would need assistance to play the game; 

there was too much inconsistency in the game; the game was cumbersome to play they needed to learn a 

lot of things before playing the game. The last statement is noteworthy, as it suggests that the players 

were able to learn the alphabet from playing the game and did not feel that they needed previous ASL 

knowledge to play the game.  

The users also responded to the questionnaire which consisted of 9 questions garnering feedback 

about the game and relevant information about the responders. Responders indicated that they had at least 

one year's experience using virtual reality technologies, and neither had experience with ASL. In 

conjunction with results from the SUS, this could indicate the game can be effective for those with no 

prior ASL knowledge but is most effective for those who are familiar with VR. Full questionnaire 

responses are in Table A.1. 

These responses offer some vital insights to the players' experience. One user commented on letters 

which the system struggles to detect, namely T, K, P, and N. K and P use the same handshapes in 

different orientations, which suggests something about the handshape gives either the hand tracking or the 

recognition system some trouble. T and N both involve tucking the thumb under a finger, which occludes 

the thumb from view.  

One responder reported a bug that the system would not recognize the last letter of a word. This bug 

has not been reproducible, so further investigation is needed.  

Both users gave suggestions for improving the game. One suggested that the hand models be shown 

from multiple angles, which would give the player a better understanding of the sign and how to shape 

their hand correctly. Another suggested that the player be prompted with clues during fingerspelling 

gameplay, which parrots a comment from Reddit suggesting that the player is given a clue if struggling to 

produce a sign.  
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Overall responses were positive.  The users enjoyed the game and were able to use it without the need 

for technical support. Most importantly the results suggest that the game shows potential for teaching 

ASL to new learners. 

6.4 In-person testing 

A small scale in-person test was conducted to measure the game's pedagogical efficacy. Two 

participants with no prior knowledge of ASL played the game five times each to measure how they 

improve over prolonged play. Each session consisted of practicing the alphabet and playing all 5 levels of 

the game for which statistics were tracked. As levels are randomly generated, lengths of tests will vary. 

The key statistics, (i) the ratio of incorrect letters to correct letters (accuracy ratio), and (ii) the production 

rate, are less dependent on level length. 

As Table A.2 shows, Participant One set a baseline of an average production rate of 5.972 seconds 

per letter, and an average accuracy ratio of 2.907 incorrect letters detected for each correct letter 

produced. These stats saw a dramatic improvement over the next four tests, finishing with a production 

rate of 2.293 seconds per letter, and an accuracy ratio of 1.494. This is an improvement of 62% in 

production rate, and 49% in accuracy ratio.  

Participant Two set a baseline of an average production rate of 3.444 seconds per letter, and an 

average accuracy ratio of 1.451 incorrect letters detected for each correct letter produced. These stats saw 

a steady improvement over the next four tests, achieving their lowest production rate of 1.414 seconds per 

letter, and an accuracy ratio of 1.1673. This is an improvement of 58% in production rate, and 20% in 

accuracy ratio. 

By observing the players in real life, we uncovered some strengths and weaknesses of the system. The 

sign recognition system excelled with “short” hand forms, such as A, S, and E, when the fingers are 

folded, and the hand is closed almost to a fist. The system handled some tall signs – like B, L – with no 

finger occlusion well. Signs that include fingers overlapping such as M, N, and T, and signs such as K 

and that require the hand to block the view of the fingers proved a little more difficult to the system. The 

dynamic signs were not difficult to recognize when produced naturally.  
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Graph 6.1: Production Rate Improvement Over Time 

 

Such a small sample size, in terms of participants and data points/testing sessions, means any 

inferences from these tests are not statistically significant. Regardless, trends that arise can be noted, as 

they may suggest how results from further testing may appear. The graphs demonstrate the rapid 

improvement in production rate by both participants before plateauing towards the end. This may occur as 

the first few sessions are spent familiarising the player with the ASL alphabet, and the mechanics of the 

game. Learning these key aspects brings dramatic improvements in time. Once the player has memorized 

the alphabet and is familiar with the mechanics, production rate is limited by the player's ability to 

produce signs consistently and anticipate following letters.  
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Graph 6.2: Average Ratio of Incorrect Letters Detected per Correct Letter Produced 

 

The graph of accuracy ratio shows participant one’s improvement over time, similarly to their 

production rate, while participant two stayed consistent throughout testing. The two participants finished 

with similar figures. In fact, this figure was also that of the native ASL user from Twitter. This suggests 

that the sign recognition system has a natural error margin which will always be present. If a game or app 

were using this sign recognition system as a typing mechanism, there would be at least one typo for each 

correct letter produced. This would be frustrating, so this system could not currently be used for 

keyboard-free typing. 

6.5 Conclusion 

The combination of evaluative evidence suggests the game’s potential as a learning tool for ASL 

fingerspelling. The improvement of the in-person participant’s accuracy ratio and production rate over 

only 5 sessions of play indicates the game has some pedagogical value. The response from online users 

was overwhelmingly positive, which shows the interest from the public for the application of the 

technology towards education. The technology recognizes most letters of the alphabet, and while dynamic 

letters are not detected “truly”, shortcuts allow them to be recognized. Letters in which fingers occlude 
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each other give the system some trouble but can be detected with adjustments to production form. Having 

to make adjustments is not ideal but is similar to speech recognition systems which are able to recognize 

American accents yet need adjustments for, say, Indian accents. 

Results from an online native ASL user show the system is still not ready for natural recognition, but 

reaching this goal draws closer as the technology improves. This game does promote focus on canonical 

hand forms which will foster rapid improvement in the short term, just as Geer and Keane found. The tool 

may not be perfect for long term development of ASL fingerspelling skills but provides new learners a 

base of knowledge and a fun practice tool. 
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7 Conclusion 

7.1 Discussion 

7.1.1 Achievements 

The project has created an “ASL Fingerspeller” game that is on the cutting edge of hand tracking in 

VR games. Hand tracking built into VR is still in its early stages, so ASL Fingerspeller is in the first wave 

of hand tracking games released to the public. Furthermore, it is one of the first games released to use a 

gesture recognition system. The development of the gesture recognition system was dependent on the PC 

to VR data transfer system provided by Oculus Link. Hand tracking support was added to Oculus Link in 

February 2020, so development of this game has only been possible for several months. It will be exciting 

to see what else can be created using these technologies as they become more accessible to developers.   

An important feature of the ASL game is that it is customizable and adaptive to the player. This is 

especially important for any gesture recognition system, as users will produce gestures differently from 

each other. The sign calibration feature of ASL Fingerspeller brings an extra element of accessibility to 

the game. Calibrating each sign to the user’s hands makes the game a little bit easier, and a little bit more 

enjoyable. 

Another important feature of ASL Fingerspeller is that it is socially useful. The app provides an 

interesting first look at American Sign Language, showing off one aspect of the language which is easy 

for English speakers to understand. Based on the response from online users, the game is fun and 

interesting for VR enthusiasts who have had little experience with ASL. While the game will not provide 

them all the knowledge and ability needed for sign language communication, it will get them started on 

their journey, and provide a fun practice tool for one part of the language. Additionally, results from in-

person testing suggest that the game will help them improve their fingerspelling ability. Most importantly, 

the fun of the game will hopefully spark an interest in ASL, encouraging the player to take further 

lessons. 
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7.1.2 Limitations 

As leading edge as the ASL Fingerspeller game is, there are limitations that come with the 

technology. Hand tracking technology has improved since the release of the LMC yet even with four 

cameras, the Quest still struggles to track fingers under occlusion. Because of this, signs such as letter M, 

N, R, and T are not properly represented by the virtual hands. Dynamic signs are not recognized based on 

their motion, but rather by fitting one pose in a sequence. This is not a true representation of these signs, 

so another form of detection system is needed to recognize and discern between dynamic gestures.  

Footage of gameplay from a native ASL user showed that the system was not ready to recognize 

fingerspelling at the fast rate of a “natural” signer. The system seems to have a natural error margin which 

makes it unusable as a typing mechanism. Unfortunately, response rate was low and due to Covid-19 

health guidelines, testing was limited. Inferences from the evaluation are not statistically significant. 

Further testing is needed to truly test the pedagogical efficacy of ASL Fingerspeller.  

7.1.3 ASL Fingerspeller 

ASL Fingerspeller is a fun and functional tool, but there is room for improvement. Further work on 

this project would include more development of the data management in the game. Saving data to the 

local drive proved to be quite tricky on the Quest. If this issue can be solved, persistent data systems can 

be implemented. This would include saving player profiles so multiple people can take turns using the 

same Quest, saving signs so that calibration is needed only once, and saving high scores so players can 

track their progress over time.  

Other improvements could include the development of a dynamic sign recognition system. Such a 

system could be repurposed for sign language vocabulary, as many ASL signs require both a hand shape 

and a specific motion. In accordance with previous research, the inclusion of a machine learning 

algorithm could prove useful in such a system. Finally, fingerspelling comprehension proves to be a 

greater challenge to L2 ASL learners than fingerspelling production. A game mode in which players 

watch an avatar fingerspell and identify the word spelled could be a helpful tool in improving 

fingerspelling comprehension. Such a game mode could be networked multiplayer, prompting one player 
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to spell a word and the other to identify it. Multiplayer versions of ASL games could also prove to be a 

useful tool in L2 ASL education.  

7.1.4 Other Uses 

The development methods used in ASL Fingerspeller could be of use for other areas in game or app 

development. Gesture recognition is applicable in a wide variety of games, ranging from simple games 

such as rock paper scissors to magic-based RPGs to dance/rhythm games. One such educational 

implementation in rhythm gaming could be musical instrument instruction. A hand tracking game using 

“air-guitars” or “air-trumpets” could provide new learners with a new and exciting way to practice the 

motions needed to play such instruments.  

Another area of use might be in augmented or mixed reality applications with no hand-held 

peripherals. Gestures could prove to be a natural method of interaction, used for purposes such as volume 

control, menu navigation, text or numerical input, environment manipulation, etc. Environment 

manipulation could be used for interior design focused apps, which would allow users to move, resize, or 

rotate superimposed pieces of furniture. Gesture recognition opens a whole new world of possibilities and 

human-computer interactions.  

7.2 Conclusion 

This project has provided answers to the questions posed earlier. Optical hand tracking in virtual 

reality in its current state does provide a platform for ASL education. The development of ASL 

Fingerspeller and evaluation of the game highlighted the strengths of the Quest’s hand tracking system. 

The game was able to successfully teach the ASL alphabet to participants in the research and improved 

their fingerspelling ability over a short period of time. The system excelled with simple signs that 

resemble closed fists or pointing gestures but struggles with more complex signs that require intricate 

finger positions. Still, users were able to produce all signs in a way that the system could recognize. 

Investigation into how ASL users would interpret the production of signs in this manner could give 

further insight into the strengths and weaknesses of ASL Fingerspeller. 
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Hand tracking is sufficient for many static signs and using shortcuts allows dynamic signs to be 

recognized as well. The limitations of the system include loss of tracking due to occlusion. Fingers or 

hands crossing prevents accurate tracking and disrupts the virtual representation of the user’s hands. This 

limitation prevents certain signs from being represented in VR, and as such the platform is not ready for 

intensive ASL education. Solutions for resolving occlusion could include external cameras to provide 

more optical coverage. Additionally, the development of a dynamic gesture recognition system could 

broaden the range of possibilities for the use of ASL in VR. Despite these shortcomings, the platform is 

ready for ASL education in small lessons, such as the alphabet, numbers, and some one-handed signs. The 

platform could be creatively exploited for a beginner’s approach to ASL. 

However the technology is used, it is clear to see that it is fun. Hand tracking in virtual reality is a 

brand new and exciting way to interact with a computer system. The possibilities of its application are 

extensive. Applications in the future can take advantage of gesture recognition, physically based 

interactions, or hands as a controller to produce creative and entertaining new types of games. 

Development of the technology has been rapid, extending accessibility in the past few years. Greater 

accessibility will lead to developers finding more creative uses for the technology, attracting more users 

to the platform. Hopefully, more development will lead to more games which will lead to more players 

learning, doing socially useful activity, and ideally having some fun along the way. 
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List of Third-Party Materials Used 

Table R.1: Third Party Materials Used 

Asset Use Sourced From 

little_robot_sound_factory_Jin

gle_Win_Synth_00.mp3 

Word complete sound effect in 

game 

ZapSplat.com 

sound_ex_machina_Button_Bli

p.mp3 

Button press/click sound effect 

in game 

ZapSplat.com 

zapsplat_multimedia_alert_noti

fication_glassy_high_pitched_s

hort_positive_001_42348.mp3 

Correct letter sound effect in 

game 

ZapSplat.com 

zapsplat_multimedia_game_so

und_synth_digital_tone_beep_

005_38537.mp3 

Letter spawn sound effect in 

game 

ZapSplat.com 

zapsplat_multimedia_game_to

ne_harp_warm_positive_correc

t_win_002_50713.mp3 

Level complete sound effect in 

game 

ZapSplat.com 

Ybot.fbx Hand model to demonstrate 

signs in game 

Mixamo.com 

Xbot.fbx Hand model to demonstrate 

signs in game 

Mixamo.com 

Oculus Integration Player hand models, interaction 

methods, hand tracking 

capabilities, VR integration for 

game development 

Unity Asset Store 

Image of Quest headset Image in report Amazon.com 

Image of ASL fingerspelling 

alphabet 

Image in report NIDCD.NIH.gov 

Image of Quest hand tracking Image in report Oculus.com 

Image of Vive with LMC 

attached 

Image in report Leapmotion.com 

Image of hand tracking under 

occlusion 

Image in report Developer.Oculus.com 

Diagram of Oculus Integration 

bone ID legends 

Images in report Reddit.com 

Diagram of close-Range 

Interaction 

Image in report Developer.Oculus.com 

Diagram of Tap-to-click 

system developed by Oculus 

Image in report Developer.Oculus.com 

https://www.zapsplat.com/music/alert-prompt-win-positive-tone-000/
https://www.zapsplat.com/music/button-blip/
https://www.zapsplat.com/music/alert-or-notification-tone-glassy-high-pitched-and-short-with-a-positive-feel-version-1/
https://www.zapsplat.com/music/game-sound-bright-synth-digital-tone-beep-5/
https://www.zapsplat.com/music/game-tone-warm-harp-positive-correct-or-win-2/
https://www.mixamo.com/#/?page=1&query=Y+Bot&type=Character
https://www.mixamo.com/#/?page=1&query=X+Bot&type=Character
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Appendix A. User Evaluations Results 

Table A.1: Open Ended User Responses from Online Survey 

Question User 1 User 2 

What did you 

like about the 

game? 

I've always wanted to learn ASL, and 

this was a super simple way to get 

started! It is fun and easy to use 

What did you 

dislike about the 

game? 

There were a few letters that I simply 

could not get recognized, namely t, k, p, 

and n.  

What worked 

well in the 

game? 

The recognition system works pretty 

well, except for the few letters I listed 

above... I think it is effective to learn ASL 

What did not 

work well in the 

game? 

Occasionally, the game simply would 

not take the last letter of a word, no 

matter how hard I tried, though this was 

probably user error.  

How would you 

improve the 

game? 

Sometimes, it was difficult to see exactly 

how each letter is formed; perhaps 

slowly turning around the example 

hands would help with that? 

On another note, it would help if for the 

practice, you could select a letter 

individually to highlight and practice. Maybe with some clues in the gameplay 

Did you learn 

anything by 

playing this 

game? Do you 

think this game 

would be 

effective in 

improving your 

fingerspelling 

ability? 

I learned more ASL in half an hour than 

I did in the last ten years, so well done! 

Very effective! 

Yes 

How much 

experience do 

you have with 

Virtual Reality 

VR? How much 

experience do 

you have with 

hand tracking in 

VR? 

In terms of my experience with VR, I 

consider myself a veteran at this point: I 

got my start with the Oculus Rift years 

ago and have recently upgraded to a 

Quest. I recently clocked in 2,000 hours 

on Steam and have some limited 

experience with Oculus Quest app 

development in Unity. 

I've also had Hand Tracking on when 

available since the day it was added to 

the experimental features tab and have 

produced some of my own hand-tracked 

content via Unity. 

1 year of experience with VR and a few 

months with hand tracking 
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Do you have any 

previous ASL 

knowledge? 

Please share 

your level of 

proficiency 

Absolutely none! I just started with it 

when I loaded up your app! No 

Please use this 

box to say 

anything else 

you would like to 

tell me about 

ASL 

Fingerspeller. 

Very interesting concept! I think as hand 

tracking improves, the few hiccups I had 

will mostly get smoothed out, so very 

excited!  
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Table A.2: In-person User Testing Results 

Legend 

• CLP – Number of correct letters produced 

• CLE – Number of correct letters expected 

• ILP – Number of incorrect letters expected 

• Time – Time taken to complete the level in seconds 

• Production Score – Number of correct letters produced divided by number of correct letters 

expected 

• Accuracy – Number of incorrect letters produced divided by the sum of incorrect letters produced 

and correct letters produced 

• Ratio – Number of incorrect letters produced divided by the number of correct letters produced 

• Production rate – Time taken to complete the level divided by correct letters produced 

Test 1  CLP CLE ILP Time 

Producti

on Score Accuracy Ratio 

Producti

on Rate 

Level 1 

User 1 23 24 73 235.6 0.9583 0.2396 3.1739 10.243 

User 2 24 26 51 132.6 0.9231 0.3200 2.1250 5.525 

Level 2 

User 1 41 42 126 199.1 0.9762 0.2455 3.0732 4.856 

User 2 30 32 52 110.2 0.9375 0.3659 1.7333 3.673 

Level 3 

User 1 34 34 100 218.2 1.0000 0.2537 2.9412 6.418 

User 2 32 32 28 63.5 1.0000 0.5333 0.8750 1.984 

Level 4 

User 1 41 43 98 226.2 0.9535 0.2950 2.3902 5.517 

User 2 46 46 48 101.2 1.0000 0.4894 1.0435 2.200 

Level 5 

User 1 46 46 136 130 1.0000 0.2527 2.9565 2.826 

User 2 42 42 62 161.2 1.0000 0.4038 1.4762 3.838 

Average 

User 1 37 37.8 106.6 201.82 0.9776 0.2573 2.9070 5.972 

User 2 34.8 35.6 48.2 113.74 0.9721 0.4225 1.4506 3.444 

 

Test 2  CLP CLE ILP Time 

Producti

on Score Accuracy Ratio 

Producti

on Rate 

Level 1 

User 1 28 28 40 69.3 1.0000 0.4118 1.4286 2.475 

User 2 25 26 29 73.3 0.9615 0.4630 1.1600 2.932 

Level 2 

User 1 28 32 71 96.9 0.8750 0.2828 2.5357 3.461 

User 2 36 37 43 76.8 0.9730 0.4557 1.1944 2.133 

Level 3 User 1 32 33 55 107.7 0.9697 0.3678 1.7188 3.366 
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User 2 36 37 49 92.3 0.9730 0.4235 1.3611 2.564 

Level 4 

User 1 39 43 94 286.2 0.9070 0.2932 2.4103 7.338 

User 2 42 42 62 77.1 1.0000 0.4038 1.4762 1.836 

Level 5 

User 1 36 39 95 136.2 0.9231 0.2748 2.6389 3.783 

User 2 50 50 94 107.1 1.0000 0.3472 1.8800 2.142 

Average 

User 1 32.6 35 71 139.26 0.9350 0.3261 2.1464 4.085 

User 2 37.8 38.4 55.4 85.32 0.9815 0.4187 1.4143 2.321 

 

Test 3  CLP CLE ILP Time 

Producti

on Score Accuracy Ratio 

Producti

on Rate 

Level 1 

User 1 19 22 33 64.8 0.8636 0.3654 1.7368 3.411 

User 2 26 26 33 68.8 1.0000 0.4407 1.2692 2.646 

Level 2 

User 1 37 37 80 65.3 1.0000 0.3162 2.1622 1.765 

User 2 36 36 71 82.1 1.0000 0.3364 1.9722 2.281 

Level 3 

User 1 31 33 66 77 0.9394 0.3196 2.1290 2.484 

User 2 30 30 34 52.2 1.0000 0.4688 1.1333 1.740 

Level 4 

User 1 39 40 69 122.9 0.9750 0.3611 1.7692 3.151 

User 2 44 44 67 92.7 1.0000 0.3964 1.5227 2.107 

Level 5 

User 1 37 37 47 52.5 1.0000 0.4405 1.2703 1.419 

User 2 45 45 60 91.9 1.0000 0.4286 1.3333 2.042 

Average 

User 1 32.6 33.8 59 76.5 0.9556 0.3606 1.8135 2.446 

User 2 36.2 36.2 53 77.54 1.0000 0.4142 1.4462 2.163 

 

Test 4  CLP CLE ILP Time 

Producti

on Score Accuracy Ratio 

Producti

on Rate 

Level 1 

User 1 22 23 33 51.4 0.9565 0.4000 1.5000 2.336 

User 2 30 30 36 45.8 1.0000 0.4545 1.2000 1.527 

Level 2 

User 1 42 43 89 111 0.9767 0.3206 2.1190 2.643 

User 2 47 47 54 52.4 1.0000 0.4653 1.1489 1.115 

Level 3 

User 1 32 33 74 125.3 0.9697 0.3019 2.3125 3.916 

User 2 33 33 44 56.2 1.0000 0.4286 1.3333 1.703 
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Level 4 

User 1 42 42 88 102.4 1.0000 0.3231 2.0952 2.438 

User 2 36 36 35 49.3 1.0000 0.5070 0.9722 1.369 

Level 5 

User 1 42 44 88 144.4 0.9545 0.3231 2.0952 3.438 

User 2 44 44 52 59.7 1.0000 0.4583 1.1818 1.357 

Average 

User 1 36 37 74.4 106.9 0.9715 0.3337 2.0244 2.954 

User 2 38 38 44.2 52.68 1.0000 0.4628 1.1673 1.414 

 

Test 5  CLP CLE ILP Time 

Producti

on Score Accuracy Ratio 

Producti

on Rate 

Level 1 

User 1 27 27 21 49.9 1.0000 0.5625 0.7778 1.848 

User 2 22 22 18 29.5 1.0000 0.5500 0.8182 1.341 

Level 2 

User 1 38 39 73 111.3 0.9744 0.3423 1.9211 2.929 

User 2 42 42 54 54.6 1.0000 0.4375 1.2857 1.300 

Level 3 

User 1 35 35 63 86.9 1.0000 0.3571 1.8000 2.483 

User 2 31 31 49 44.4 1.0000 0.3875 1.5806 1.432 

Level 4 

User 1 37 37 50 84.9 1.0000 0.4253 1.3514 2.295 

User 2 42 42 56 54.4 1.0000 0.4286 1.3333 1.295 

Level 5 

User 1 44 44 71 84.1 1.0000 0.3826 1.6136 1.911 

User 2 38 38 78 68.6 1.0000 0.3276 2.0526 1.805 

Average 

User 1 36.2 36.4 55.6 83.42 0.9949 0.4140 1.4928 2.293 

User 2 35 35 51 50.3 1.0000 0.4262 1.4141 1.435 
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Appendix B. Code 

public void CheckLetter(string letter)//check if letter just produced is the right let

ter 

    { 

        if(spellCheck) 

        { 

            if(letter[0].Equals(toSpell[letterIndex]))//if first char of string associ

ated with produced sign matches expected letter 

            { 

                AddLetter(letter);//add the letter to the spelled word 

            } 

            else 

            { 

                ilp++; 

            } 

        }         

    } 

 

void AddLetter(string letter)//check if word is fully spelled 

    { 

        audioManager.Play("Correct Letter"); 

        spelled += letter;//add the letter to the spelled word 

        letterIndex++;//go to the next letter 

 

        clp++; 

 

        if(spelled.Equals(toSpell))//if spelled word matches word to spell 

        { 

            NextWord();//go to next word 

        }         

    } 

 

public void NextWord()//go to next word 

    { 

        audioManager.Play("Next Word"); 

 

        wordTimer = 0; 

 

        spelled = null;//reset word to spell 

        letterIndex = 0;//reset letter, go to start of word 

 

        wordIndex++;//go to next word 

 

        if(wordIndex == dictionary.Count)//if that was the last word 

        {             

            OnLevelComplete.Invoke();//invoke end of level event 

            audioManager.Play("Level Complete");//play the end level sound 

            levelActive = false;//turn off level active 

 

            if(ilp < highScores[levelIndex].x)//if fewer incorrect letters detected 

            { 

                highScores[levelIndex].x = ilp; 

            } 

            if(levelTimer < highScores[levelIndex].y)//if less time taken 

            { 

                highScores[levelIndex].y = levelTimer; 

            } 

        } 

 

        ToSpellUpdate();//update word to spell 

    } 

 
Figure B.1: Spellchecker Code 
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[System.Serializable] 

public class Sign 

{ 

    public string name;//name of the sign 

    public List<Vector3> fingerPositionalData;//list hold the positional data for each

 bone in the hand 

    public Quaternion rootRotation;//holds the rotational data of the root of the hand

 (the wrist) 

 

    public UnityEvent OnDetect;//event to execute when the sign is recognized 

 

    public Sign DeepCopySign(Sign oldSign) 

    { 

        Sign newSign = new Sign(); 

 

        newSign.name = oldSign.name; 

        newSign.fingerPositionalData = oldSign.fingerPositionalData; 

        newSign.rootRotation = oldSign.rootRotation; 

        newSign.OnDetect = oldSign.OnDetect; 

 

        return newSign; 

    } 

} 

Figure B.2: Code Implementation of a "Sign" 

public void Overwrite()//function for overwriting the finger data of a sign 

    { 

        Sign sign = activeSign; 

 

        List<Vector3> positionalData = new List<Vector3>();//new list for positional d

ata of bones 

        foreach(var bone in activeHand.Bones)//run through all bones in the hand 

        { 

            positionalData.Add(activeHand.transform.InverseTransformPoint(bone.Transfo

rm.position));//store positional data 

        } 

 

        sign.fingerPositionalData = positionalData;//overwrite the positional data wit

h the new data 

        sign.rootRotation = activeHand.Bones[1].Transform.rotation;//overwrite the rot

ation data with the new (current) rotation 

 

        Debug.Log("Active Profile (index): " + profiles[profileIndex].name); 

        Debug.Log("Active Profile (profile): " + activeProfile.name); 

 

        Debug.Log("Active sign (index): " + profiles[profileIndex].rightHandSigns[sign

Index].name); 

        Debug.Log("Active sign (sign): " + activeSign.name); 

 

        //activeSign = sign;//overwrite the active sign 

 

        if(isLeft) 

        { 

            profiles[profileIndex].leftHandSigns[signIndex] = sign; 

        } 

        else 

        { 

            profiles[profileIndex].rightHandSigns[signIndex] = sign; 

        }       

    } 

Figure B.3: Overwrite Function used in Calibration 
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Sign Recognize()//function that checks current hand position 

    { 

        Sign currentSign = new Sign();//get current sign 

        float currentMin = Mathf.Infinity;//set minimum distance from listed sign 

 

        for(int j = 1; j < activeList.Count; j++)//go through list of saved signs to c

ompare 

        { 

            float sumDistance = 0;//how far away the current sign is from listed signs 

            bool isDiscarded = false;//if the sign doesn't match listed signs 

 

            //compare the current sign to listed signs 

            for(int i = 0; i < activeHand.Bones.Count; i++)//iterate through bones 

            { 

                Vector3 currentPosition = activeHand.transform.InverseTransformPoint(a

ctiveHand.Bones[i].Transform.position);//get current positional data for all bones 

 

                float distance = Vector3.Distance(currentPosition, activeList[j].finge

rPositionalData[i]);//calculate distance from saved bone position 

 

                if(distance > tolerance)//if current sign is not close enough, stop co

mparing, move on to next sign 

                { 

                    isDiscarded = true; 

                    break; 

                } 

                sumDistance += distance;//add up the distance of all the bones 

            } 

 

            float rotDifference = Mathf.Abs(Quaternion.Dot(activeHand.Bones[1].Transfo

rm.rotation, activeList[j].rootRotation)); 

            if(spawner.spawn){rotDifference = 1f;} 

 

            if(!isDiscarded && sumDistance < currentMin && rotDifference > (1f - angle

Tolerance))//if the sign is not discarded, close to listed sign, and the wrist rotatio

n is close enough 

            { 

                currentMin = sumDistance;//set the minimal distance to how close we go

t to the listed sign against which we are comparing 

 

                currentSign = activeList[j];//set the sign to the one against which we

 are comparing 

            } 

        } 

 

        return currentSign;//return the sign 

    } 

 

    void Update() 

    { 

        if(detect) 

        { 

            Sign currentSign = Recognize();//check if the sign being produced is a sav

ed sign 

            bool recognized = !currentSign.Equals(new Sign());//this tests that the Re

cognize() function returned a listed sign, instead of null 

 

            if(recognized && !currentSign.Equals(previousSign))//check if current sign

 is different from last sign recognized (no repeats) 

            { 

                previousSign = currentSign;//store the current sign as previous so as 

to compare and not repeat 

 

                currentSign.OnDetect.Invoke();//invoke OnDetect 

            } 

        }       

    } 

Figure B.4: Sign Detection/Recognition System 


