

Optical Hand Tracking in Virtual

Reality to Teach American Sign

Language

Christian O’Brien BSc

Submitted in partial fulfilment for the degree of Master of Science in

Serious Games and Virtual Reality

August 12, 2020

Supervised by Dr. Daniel Livingstone MSc BEng FHEA

School of Simulation and Visualisation

The Glasgow School of Art

i

Abstract

Optical hand tracking technologies in Virtual Reality (VR) offer an exciting new method of

human-computer interaction. Among the applications being explored, its use for education holds great

promise. Gesture recognition systems are in development, but none have yet proven to support

existing gesture collections such as American Sign Language (ASL). Fingerspelling is central to ASL

and is often a challenge to ASL learners, so digital tools could assist them in the acquisition of this

skill. This paper explores the use of a virtual reality serious game which utilizes optical hand tracking

to teach the ASL alphabet. The question is posed whether the use of such a game will improve a

player’s ability to fingerspell.

The new “ASL Fingerspeller” game was developed for the Oculus Quest using state of the art

software and hardware, the latest of which came to market in February 2020. The game utilizes a

simple sign recognition system which defines a sign as finger positions and wrist orientation and is

customizable to each player. The game challenges the player to fingerspell names and places using the

ASL alphabet.

Evaluation evidence confirmed that the game was able to successfully teach the ASL alphabet to

participants in the research and improved their fingerspelling ability over a short period of time.

Online users and in-person research participants enjoyed playing the game and thought it to be a

useful learning tool. Results from extended testing saw an average improvement in sign production

rate of 60 percent within five uses of the game. Testing showed areas for the game’s improvement

including improving the capability to detect signs with crossed or hidden fingers. These results are

illustrative yet with the caveat that since testing of the game was limited by Covid-19 related

restrictions, sample sizes were statistically insignificant.

The research demonstrates the potential use of hand tracking for educational purposes. The

technology is not yet capable of supporting full ASL vocabulary but can support most signs of the

alphabet. The game may not promote development of fingerspelling skills in the same manner native

ii

signers learn the skill, but it can be used as a starting point for new learners. Further research could

explore the inclusion of more advanced gesture recognition systems, especially those that recognize

dynamic gestures.

This research is some of the first conducted using the Oculus Quest’s hand tracking technology,

and its application towards education. The methods in this study could be used as an example for

further research in the fields of hand tracking games, games about ASL education, and simple gesture

recognition systems. As the technology develops, including becoming even more user-friendly and

affordable, this project illustrates that the opportunities for new applications are extensive and

exciting.

iii

Table of Contents

Abstract i

Table of Contents iii

List of Tables vi

List of Figures vii

Declaration of Originality viii

Definitions and Abbreviations ix

1 Introduction 1

1.1 Application 1

1.2 Hand Tracking Technology 1

1.3 Groups of Interest 2

1.4 Structure of this Dissertation 3

2 Literature Review 5

2.1 Digital Game Based Language Learning (DGBLL) 5

2.2 ASL Instruction and Fingerspelling Comprehension 9

2.3 Gesture recognition technology 11

2.4 Summary 12

3 Materials 14

3.1 Virtual Reality Headsets and Hand Tracking Solutions 14

3.1.1 Oculus Quest 14

3.1.2 Hand Tracking 14

3.1.3 Alternative Solutions 15

3.2 Development Tools 16

iv

3.2.1 PC to VR Workflow 16

3.2.2 Game Engine 16

3.2.3 Hand Tracking Compatibility 17

3.2.4 Modelling and Animation 18

4 Methods 19

4.1 Planning 19

4.2 Sign Detection 20

4.2.1 Defining a “Sign” 20

4.2.2 Sign Saving and Detection 20

4.2.3 Dynamic Signs 21

4.2.4 Sign Detection Implementation 21

4.3 Sign Functionality 22

4.4 Gameplay 22

4.5 User Interface Design 23

4.6 Finishing Touches 25

5 Implementation Results 26

5.1 Menu 27

5.2 Sign Calibration 29

5.3 Practice Mode 30

5.4 Fingerspelling Challenge 31

5.5 Issues 33

6 Evaluation 35

6.1 Approaches 35

v

6.1.1 In-person Medium Scale Testing 35

6.1.2 Online Testers 35

6.1.3 Extended User Testing 36

6.2 Limitations 36

6.3 Feedback from Online Users 37

6.3.1 SideQuest 37

6.3.2 Reddit 37

6.3.3 Twitter 37

6.3.4 Online Survey 38

6.4 In-person testing 41

6.5 Conclusion 43

7 Conclusion 45

7.1 Discussion 45

7.1.1 Achievements 45

7.1.2 Limitations 46

7.1.3 ASL Fingerspeller 46

7.1.4 Other Uses 47

7.2 Conclusion 47

References 49

Referenced Software and Games 51

List of Third-Party Materials Used 52

Appendix A. User Evaluations Results 53

Appendix B. Code 58

vi

List of Tables

Table 6.1: Resulting Statistics of a Play Session from a Native ASL User .. 38

Table 6.2: SUS Survey Responses ... 39

Table R.1: Third Party Materials Used ... 52

Table A.1: Open Ended User Responses from Online Survey ... 53

Table A.2: In-person User Testing Results .. 55

List of Graphs

Graph 6.1: Production Rate Improvement Over Time ... 42

Graph 6.2: Average Ratio of Incorrect Letters Detected per Correct Letter Produced 43

vii

List of Figures

Figure 1.1: Oculus Quest VR Headset ... 2

Figure 2.1: The ASL Fingerspelling Alphabet ... 8

Figure 3.1: HTC Vive Headset with LMC Attached .. 15

Figure 3.2: Hand Tracking Under Occlusion ... 17

Figure 3.3: Oculus Integration Bone ID Legend .. 18

Figure 4.1: Games Design Document .. 19

Figure 4.2: Interaction Range ... 23

Figure 4.3: Implementation of a "Physical" Button in Early Stages of Development 24

Figure 4.4: Tap-to-Click System Developed by Oculus ... 24

Figure 5.1: Main Menu ... 26

Figure 5.2: Set Active Hand Menu ... 27

Figure 5.3: Player Setting the Right Hand as Active .. 28

Figure 5.4: Player Using The Main Menu .. 28

Figure 5.5: Sign Calibrator ... 29

Figure 5.6: Player Using The Sign Calibrator .. 30

Figure 5.7: Practice Mode .. 30

Figure 5.8: Player Using the Practice Mode ... 31

Figure 5.9: Fingerspelling Challenge ... 32

Figure 5.10: Player Playing the Fingerspelling Challenge ... 33

Figure B.1: Spellchecker Code ... 58

Figure B.2: Code Implementation of a "Sign" ... 59

Figure B.3: Overwrite Function used in Calibration .. 59

Figure B.4: Sign Detection/Recognition System .. 60

viii

Declaration of Originality

STUDENT ID No.: 19129939

Own Work Declaration

You must complete this declaration (each box ticked to show that the condition has been met),

signed and dated, and included with each piece of work submitted for assessment (practical and

written). Please note work will not be accepted unless this form is attached.

As GSA have now obtained Turnitin plagiarism software, a cross section of student

submissions will be evaluated.

Name: Christian O’Brien

Course/Programme: MSc Serious Games and Virtual Reality

Title of Work: Optical Hand Tracking in Virtual Reality to Teach American Sign Language

I confirm that all this work is my own except where indicated, and that I have:

• Clearly referenced/listed all sources as appropriate

• Referenced and added inverted commas to all quoted text (from books, journals, web, etc)

• Given the sources of all pictures, sound, data etc. that are not my own

• Not made any use of the report(s) or essay(s) of any other student(s) either past or present, or

lifted extracts from web pages without appropriate referencing

• Not sought or used the help of any external professional agencies for the work

• Acknowledged in appropriate places any help that I have received from others (e.g. fellow

students, technicians, statisticians, external sources)

• Complied with any other plagiarism criteria specified in the Course Handbook

I understand that any false claim for this work will be penalised in accordance with the GSA

regulations

Signature:

Date: August 12, 2020

ix

Definitions and Abbreviations

Term Definition

American Sign Language (ASL) A non-verbal language used largely by the Deaf

and Hard-of-Hearing community in North

America. Vocabulary of ASL is made of hand

gestures and facial expressions.

Application Programming Interface (API) A software interface which gives the developer

access to a set of functions

Augmented Reality (AR) A system in which computer-generated imagery

is overlaid on the user’s view, which gives the

impression of a digitally augmented space

Bone A point on the hand tracked by the Oculus Quest

which holds its own positional and rotational

data

Degrees of Freedom (DoF) The axes along which a VR headset will track

motion. 6DoF includes the X, Y, and Z axes for

translation (movement) (2 degrees per axis), as

well as the X, Y and Z axes for rotation

(turning)

Digital Game-based Language Learning

(DGBLL)

Learning a language using digital games

Extended Reality A term which encompasses technologies related

to simulated experiences such as virtual reality

and augmented reality

Fingerspelling A process in ASL in which words are spelled

out using the signs for the letters of the English

alphabet. Fingerspelling is used for names and

words for which there is no dedicated sign.

Game-based Learning Learning that occurs through explicit instruction

when playing a game

Game-enhanced Learning Learning that occurs through implicit instruction

when playing a game

Gesture Recognition The technology by which human hand gestures

are used as an interface to a computer system

Global Space The position of an object relative to a fixed

origin point

Hand Tracking The technology of tracking the motion and

rotation of hands for virtual re-creation.

x

Hands Interaction Toolkit (HIT) A subsection of the Unity Integration API which

allows for hand ray casting and physics

interactions

Handshape The positioning and orientation of the fingers

when producing a sign in ASL. Tall handshapes

refer to signs with fingers straight or unfolded.

Short handshapes refer to signs with the fingers

bent or folded

Head-mounted Display (HMD) A headset which places screens in front of the

user’s eyes, used for virtual and augmented

reality

Hidden Markov Model (HMM) A neural network algorithm which is commonly

used in speech recognition systems to find

“hidden” states (Fok et al., 2015)

InverseTransformPoint A method of finding an objects local space

relative to another object

k-Nearest Neighbour (kNN) A machine learning algorithm used for

comparison and sorting

Leap Motion Controller (LMC) An optical hand tracking module that captures

the movements of the users hands using near-

infrared sensors. (Ultraleap, 2019)

Local Space The position of an object relative to itself or

another object

Multilayer Perceptron (MLP) A feed forward artificial neural network (Mapari

and Kharat, 2016)

Near-Infrared A section of the electromagnetic spectrum which

is invisible to the naked human eye

Oculus Quest (Quest) A VR HMD released by Oculus in 2018. The

Quest uses four cameras for spatial tracking and

offers wireless optical hand tracking

Oculus Unity Integration An API which allows for the development of

Quest games using Unity

Ray Cast A method of checking overlap or intersection.

One object fires a ray. If the ray hits the other

objects, the system recognizes the objects as

overlapping.

Reddit A social media site which hosts discussion

boards separated by user interest groups

Second Language (L2) An individual’s learned but non-native language

SideQuest An unofficial user-driven platform for Oculus

Quest games

xi

Spawn To generate

String A data type consisting of a series of characters

Support Vector Machine (SVM) A machine learning algorithm used for

classification

Unity A game engine and development platform which

offers a real-time physics engine and

customizable render pipelines. Unity is

developed by Unity Technologies

Unreal A game engine and development platform which

offers a real-time physics engine and

customizable render pipelines. Unreal is

developed by Epic Games

Virtual Reality (VR) The technology of creating a simulated

experience, modern systems use head mounted

displays

XR Interaction Toolkit An API which allows for the development of

flexible VR games which can be deployed to a

multitude of platforms

1

1 Introduction

As virtual reality (VR) technology becomes more readily accessible, the range of possible

applications of the technology is growing. May 2019 saw the release of the Oculus Quest, one of the first

commercially available standalone VR headsets to offer six degrees of freedom of motion (see Figure

1.1). In December of the same year, a software update added hand tracking capabilities to the Quest,

making it the first VR headset with built-in hand tracking. Optical hand tracking is the process of using

cameras and sensors to detect the position and rotations of a user's hands (and fingers), and then applying

these transforms to three dimensional (3D) models of hands inside a virtual environment to mirror the

user’s real hands. The addition of hand tracking made the Quest a powerful tool for development of

experimental applications.

1.1 Application

One such application of the Quest’s hand tracking is sign language recognition. Sign language uses

hand poses and gestures as a form of vocabulary. The recognition of such signs could be used for a

variety of purposes including education, chat rooms, games, etc. This project aims to explore the use of

optical hand tracking to teach key dimensions of American Sign Language (ASL). The game will focus

on teaching the ASL alphabet, as well as developing fingerspelling skills. The ASL alphabet consists of

24 static signs and two dynamic signs, which poses an interesting challenge of discerning between the

two forms. This project will explore the current capabilities of the Quest’s optical hand tracking with the

goal of using this technology to teach ASL through a serious game. Through this the strengths and

weaknesses of the Quest can be assessed. The project will give some insight to how well the Quest’s hand

tracking fits ASL production and potentially other applications in the future.

1.2 Hand Tracking Technology

The Quest’s hand tracking is an important step in the evolution of hand tracking technology. Prior to

this device coming on the market, the most notable commercial solution was the Leap Motion Controller

(LMC). That device connected to computers via USB, and Application Programming Interfaces (API)

made the device compatible with Unity and Unreal for game development. The device could be attached

2

to VR headsets for hand tracking implementation in VR applications. While this solution worked, the

detection range was narrow and required cables, thereby limiting the freedom of the user. The Quest has

the advantage of having hand tracking built-in and being untethered, arguably a purer virtual reality

experience. The LMC has been used in studies to detect American Sign Language signs, however few, if

any, studies have tested the application in VR or applied the use of sign detection towards education.

Figure 1.1: Oculus Quest VR Headset (Oculus, 2018; Oculus.com)

1.3 Groups of Interest

This project may be of interest to several groups. Gesture recognition systems integrated into VR hold

potential to be used for a multitude of purposes. This project will attempt to use gesture recognition for

sign language instruction in a serious game. This could prove useful for sign language educators.

American Sign Language is taught in schools, where the use of educational games is becoming more

common. Educational games have been shown to provide specific learning advantages, especially in the

linguistics field. More research is needed to determine if the advantages apply to manual languages such

as ASL, but this study may show potential for the use of serious games in ASL classrooms.

ASL is taught largely to two groups: deaf children and their relatives (especially parents). As younger

generations become more accustomed to immersive tools, they will be well equipped to make use of the

unique advantages extended reality (XR) offers. Parents may not engage with digital games in the same

file:///C:/Users/chris/Documents/Serious%20Games%20and%20Virtual%20Reality/Dissertation/Documents/Oculus.com

3

way, but still stand to see the benefits of serious games. This project will specifically look at

fingerspelling, an area of ASL which non-native learners struggle with. A serious game could provide the

context and motivation a parent needs to make improvements in this area.

Another group which could take interest in this project is experimental game developers and user

interface (UI) designers. This project will explore the new design choices posed by the lack of physical

peripherals or interaction methods. Gesture recognition opens a host of new interaction methods. By using

hand tracking, the user is left with their hands open to interact with real-life environments, however it

takes away all the functionality which can be mapped to buttons and joysticks. A gesture recognition

system could be used in virtual reality games as locomotion method, menu navigation, spell casting, data

input, etc. VR versions of role-playing and exploration games like Minecraft, Skyrim, or Kingdom Hearts

could take advantage of such systems. The same system could be applied to user interfaces in augmented

reality (AR) apps. Apps requiring text input could use a system of ASL fingerspelling to fill such

requirements. AR headsets could use gesture recognition for functions such as volume control,

play/pause, closing windows, and other common functions. These functions might be well used in apps

focused on interior design, digital finger painting, or digital puppetry. As peripheral-free technologies

become more prevalent, designers will be faced with the challenge of creating natural interfaces, for

which gesture recognition could be a perfect solution.

1.4 Structure of this Dissertation

This dissertation is structured in six parts:

● Literature Review

● Materials

● Methods

● Implementation Results

● Evaluation

● Conclusion

The literature review discusses previous research conducted in areas pertinent to this study. Materials

and Methods provides an overview of the development of the ASL Fingerspeller game. Implementation

4

results describe the finished ASL fingerspelling app and its functionality and gameplay. Evaluation

discusses feedback, testing, and efficacy of the game. Finally, the conclusion summarises findings,

highlight achievements, and point out areas for improvement and future work. Ethical approval to carry

out this research was given by Dr. Daniel Livingstone in accordance with the ethical guidance set by The

Glasgow School of Art.

5

2 Literature Review

Digital games have quickly become one of the most popular recreational activities across the globe.

Since the rise of mobile technologies, games have become more accessible than ever. Digital games are

played on PCs, consoles, handheld devices, mobile phones, and VR headsets. As games have become

more accessible and more prevalent, educators have explored the possibility of exploiting games for

educational purposes. Sykes (2018) points out that games designed to encourage self-improvement have

become popular, such as Pokémon Go for walking and community building. The success of such games

shows the potential for digital games to be used for educational purposes.

2.1 Digital Game Based Language Learning (DGBLL)

Reinhardt and Sykes (2012) make a case for the use of games in education. They argue that learning

can be game-enhanced, or game-based. Game-enhanced learning refers to implicit instruction when

players pick up the knowledge or skills as they play without being made aware of their learning

(Reinhardt and Sykes, 2012). Players may learn the content to enhance the gameplay, rather than play the

game specifically to learn the content. Games such as Portal 2 can promote learning of puzzle solving and

teamwork but are not explicitly designed to teach these skills. Game-based learning refers to the explicit

instruction given through games designed to teach a specific subject (Reinhardt and Sykes, 2012). These

games are usually a better fit to be used in classroom settings than commercially developed games. It is

still unclear if one approach produces more substantial learning than the other and more research is

needed on that point. Sykes (2018) suggests that as commercial games become more accessible to larger

audiences, they may provide better learning experiences for more students globally.

Regardless of whether learning is game-based or game-enhanced, the advantages of learning through

a game are the same. Sykes (2018) makes the case that digital games are:

● Customizable

● Repeatable

● Offer multiplayer over distance

6

Digital games offer repeatability through short play segments or save states. Short play segments

mean having the player complete one or two tasks within a time frame, usually under five minutes. This

lets the player practice the same skills multiple times in one gaming session. Save states are a saving

system which allows the player to return to a previous point in the game and play it over again. These are

used in narrative based games, allowing a player to save their progress and return to key points in the

game, repeating scenarios to extract more information each time.

In addition to these advantages, Reinhardt and Sykes (2012) put forward five pedagogical advantages

of education digital games:

● Learner-directed goal orientation

● Opportunities for interaction with the game, through the game, and around the game

● Just-in-time, individualized feedback

● Relevant narrative and context

● Motivation

One of the most important of these is just-in-time, individualized feedback. A key feature of digital

games is the player being informed when they make mistakes and are then encouraged to rectify them

quickly. This is applicable to language learning, where mistranslations can cause discrepancies (Reinhardt

and Sykes, 2012)

Motivation is also an important aspect of DGBLL. Games which properly embody learning into

enjoyable mechanics can foster motivation to play the game more. This is difficult to achieve and is a

mark of excellent game design (Reinhardt and Sykes, 2012).

A collective of researchers from institutes in Taiwan (Hung et al., 2018) reviewed 50 studies on

DGBLL and discovered trends which give us indications of the state of the field. The key findings were:

● Most DGBLL games are custom built by researches for use in studies

● The most common platform for such games was PC

● English was the most common focus of DGBLL

● Test samples were mostly made up of university students

7

Studies using custom built games have tended to yield findings that suggest DGBLL games are

pedagogically effective, yet the same conclusion cannot be drawn about commercially released

educational games. PC is likely the most used platform as PCs are accessible and familiar to most

participants. Further study is needed to draw conclusions about pedagogical efficacy of games played on

alternative consoles.

The use of DGBLL for Sign Language instruction is not novel. Researchers from the University of

Tunis conducted a study using a PC game designed to teach Tunisian-Arabic Sign Language to children.

The participants (children) mostly reported that the game seemed useful and was satisfying (Bouzid et al.,

2016). They unanimously reported that the game was easy to use and learn from. Researchers noted that

the children enjoyed the presence of a signing avatar. The enjoyment of a flat screen memory matching

game could be a positive indication for participants to enjoy a virtual reality game in which a player can

use their own hands. This study did not test pedagogical efficacy, so conclusions about pedagogical

effects of DGBLL Sign Language games cannot be drawn. While the sample size for this study was

statistically insignificant and the game focused on Tunisian-Arabic Sign Language, it shows potential for

the usefulness and satisfaction of a VR ASL game.

8

Figure 2.1: The ASL Fingerspelling Alphabet (NIH, 2019; NIDCD.NIH.gov)

https://www.nidcd.nih.gov/health/american-sign-language

9

2.2 ASL Instruction and Fingerspelling Comprehension

American Sign Language (ASL) is the de facto manual language for the Deaf and Hard-of-Hearing

(HoH) community in North America. ASL has roots in French Sign Language and is not closely related to

British Sign Language (Snoddon, 2017; NIH, 2019). A common misconception about ASL is that it is a

manual translation of English. This is untrue and can be detrimental to an ASL learner’s development.

ASL has its own grammatical structure and vocabulary which is not equivalent to a 1-for-1 translation

from English (Snoddon, 2017). It is important to recognize the history and culture of the American

Deaf/Hard-of-Hearing community and their language.

One aspect of ASL which does have connections to English is fingerspelling. Fingerspelling is the

practice of producing consecutive signs representative of English letters to spell out a word.

Fingerspelling is used to spell names, proper nouns, or English words for which there is no equivalent

dedicated sign (Snoddon, 2017; NIH, 2019). Each English letter has a manual form (see Figure 2.1).

Twenty-four are static, and two (letters J and Z) are dynamic, in which the letter is traced with a certain

fingertip movement. Native signers can produce signs in quick succession, spelling out words at high

speeds, just as many native English speakers can write or type quickly. Fingerspelling is an area in which

second language (L2) ASL learners struggle (Quinto-Pozos, 2011; Geer, 2016).

Research into fingerspelling comprehension conducted by Geer and Keane (2014; 2018) has given

some insight into how L2 learners develop fingerspelling comprehension skills. When learning the ASL

manual alphabet, learners are often shown pictures of the static form of the letter. As a result of this, they

focus on recognizing the canonical held forms of letters, rather than being able to see them made during

transitions from letter to letter (Keane and Geer, 2014). This can be thought of similarly to having to

“sound out” a word while reading, rather than being able to recognize a word as a whole. It is thought that

native signers can recognize whole words from the “shape” of handshapes and the transitions between

them. “Shape” of a sign refers to the stretch/curl of the fingers. Tall letters have at least one outstretched

finger (D, U, W). Short letters used curled fingers or closed hands (A, N, S).

10

Geer and Keane (2014) conducted a study using 16 ASL students at the University of Texas at

Austin, 12 of whom were native English speakers. Each participant was presented with two sequences of

videos of a person fingerspelling English words. One video blacked out the transitions between canonical

forms leaving only the static holds of the letter, while the other video blacked out the holds leaving only

the transitions. Participants were asked to write the word they had just seen fingerspelled. The results

showed that L2 learners perform much better when shown static signs. They performed better even than

when shown videos of fingerspelling with no segments removed, indicating L2 ASL learners’ dependency

on canonical hand forms (Keane and Geer, 2014).

Geer and Keane have conducted several studies focused on the importance of implicit vs explicit

instruction. In two experiments of 63 and 80 participants, results showed that L2 learners struggle with

hand shapes produced in non-perfect form (Keane and Geer, 2014). The most significant of this was the

recognition of the letters K and P, which differ only by wrist rotation. Multiple participants interpreted a

spelling as “Kortugal” when the actual word was “Portugal”. Geer (2016) also notes that native signers

flex their wrist forward when producing the letter Y. This flexion indicates the letter Y, even if the fingers

do not hit their canonical form (Geer, 2016). Explicit instruction can help L2 ASL learners pick up on

subtle differences and improve their fingerspelling comprehension skills. Implicit instruction was not as

significantly impactful in short term learning (Geer, 2016).

Across North America there are different dialects of ASL and variances in forms. For example, when

fingerspelling words with an R following a U, some signers will combine the two and a wrist flexion.

Geer and Keene (2018) found that unless specifically instructed about such variances, participants were

unable to discern these forms and were unable to recognize the words being fingerspelled. This further

shows that L2 learners focus on canonical handshapes and that short-term improvement is best fostered

through explicit instruction.

These studies from Keene and Geer are important as they highlight some of the issues L2 ASL

learners struggle with while practicing fingerspelling. The results are particularly interesting as they show

that L2 learners develop fingerspelling comprehension skills much differently from native signers. Native

11

signers can develop skill through implicit instruction over long periods of time while exposed to other

signers. Studies exploring the use of implicit instruction on L2 ASL learners over long periods could find

results contrasting to the results found in Geer and Keene’s studies.

Digital fingerspelling tools have been in development for over two decades. In 1998, Su and Furuta

developed an online fingerspelling comprehension tool using VR Modelling Language. The system

allowed users to input a word and watch a 3D model of a hand spell the word. A system like this could be

perfect for incorporating into a game designed for fingerspelling comprehension skills. The researchers

noted that their system was slow, however technological advances over the last 20 years would improve

this system. (Su and Furuta, 1998)

2.3 Gesture recognition technology

A digital game which teaches the player sign language could make use of a system that recognizes

signs and hand gestures. Research in the field of gesture detection has advanced over the last decade.

Several solutions exist, most notably motion capture systems, gloves fitted with accelerometers and flex

sensors, and the Leap Motion Controller (LMC). Of these solutions, the LMC has been most studied by

academic researchers, likely due to their low cost and ease-of-use. The LMC works using two Near-

Infrared cameras, and three LEDs to detect hands at a range of 20-60cm (Ultraleap, 2019). Software

Development Kits are available for use of the LMC with both Unity and Unreal, as well as compatibility

with VR headsets such as the HTC Vive or Oculus Rift.

Since the release of the LMC in 2012, researchers have explored the application of the device for

gesture recognition. A notable focus of such research has examined the use of machine learning and

neural network sorting algorithms. These algorithms are used to compare captured signs against datasets

of example signs or other captured signs and use the results to refine the calibration of the gesture

recognition.

An early study compared a k-Nearest Neighbour (k-NN) to a Support Vector Machine (SVM)

algorithm in recognizing gestures using an LMC. The k-NN model achieved an average detection

accuracy rate of 73% while the SVM model achieved 80% (Chuan, Regina and Guardino, 2014). These

12

figures can be compared to a similar study which used a k-NN algorithm and resulted in an average

detection accuracy rate of 82.5% (Clark and Moodley, 2016). The statistics are respectable for such early

stages in the technology but showed room for improvement.

Improvement was found with the incorporation of Hidden Markov Models (HMM). One study

achieved an 86% average detection accuracy rate when testing 24 ASL signs using an HMM.

Furthermore, an average accuracy rate of 93.14% was achieved when using an HMM to classify signs

detected by two LMCs simultaneously (Fok et al., 2015). This result also shows potential for multi-sensor

systems. While these studies demonstrate the evolution of the field, none were statistically significant.

One of the most significant studies to date used 146 participants testing 32 static signs of ASL letters

and numbers with a Multilayer Perceptron (MLP) neural network. It reported an average accuracy rate of

90% (Mapari and Kharat, 2016). While this study is more statistically significant than others, it is difficult

to tell if this success comes from a larger test sample, the MLP neural network, or both. Regardless, it

further demonstrates the prevalence of neural networks in this field.

A recent literature review of hand gesture recognition techniques (Cheok, Omar and Jaward, 2017)

highlights some trends seen in the cases previously described. While the field is active and under

development, no test of statistical significance had yet been carried out, and therefore no system was close

to commercial readiness. HMMs are used prevalently in dynamic gesture recognition while SVMs have

been used for static gesture recognition. The study does note that while sign language vocabulary is vast,

the catalogue of gestures tested is narrow (Cheok, Omar and Jaward, 2017). As the technology

progresses, neural networks improve, and more tests are carried out the field will approach a viable

commercial solution to gesture recognition software. Much more work is needed, however, to support full

sign language integration.

2.4 Summary

The literature shows some important points to consider when exploring future uses of the technology.

Firstly, digital games offer a set of advantages for teaching, especially teaching languages, however this

research mostly comes from digital games using the PC platform, so the efficacy of digital games on other

13

platforms is yet to be determined. Secondly, American Sign Language is a complex and intricate

language, just as spoken languages are, and proposes a certain set of challenges for integration in

language recognition technologies. Thirdly, gesture recognition systems are improving in conjunction

with hand tracking technologies, but sign language recognition is still in its infancy. The technology still

faces accessibility issues in terms of hardware, and so commercial, in-home solutions are not yet

available. Keeping these points in mind, the questions can be posed:

● Does virtual reality (VR) and optical hand tracking in its current state provide a sufficient

platform for ASL education?

● What are the limitations preventing ASL education and communication in VR platforms?

● Will the use of a serious game improve a player’s ability to use fingerspelling?

The following study will attempt to answer these questions through the development of a VR serious

game using hand tracking technology to teach the ASL alphabet and fingerspelling skills.

14

3 Materials

To evaluate the efficacy of a VR serious game about ASL, the first challenge is to create such an

application. At the outset of the project, there was no other game developed, to my knowledge, using any

hand tracking technology with the intent of ASL instruction, hence the progress began from scratch. I set

out to develop a game to use Oculus Quest’s hand tracking technology to teach the ASL alphabet and

improve fingerspelling skills. This game should make use of a gesture recognition system to indicate

when users are producing signs correctly. Through this, a list of recognizable signs will be produced, and

a list of signs which the system is unable to recognize. Analysis of this list will give insight to the

strengths and weaknesses of the hand tracking/gesture recognition system. After having users play the

game, conducting a survey will allow evaluation of the pedagogical efficacy of the game: whether it

improved fingerspelling skills or not. Through this study, it will be shown what improvements could be

made to hand tracking technology to better suit use for ASL instruction.

3.1 Virtual Reality Headsets and Hand Tracking Solutions

3.1.1 Oculus Quest

A key piece of equipment for this project is the Oculus Quest. The Quest is a virtual reality headset

which uses inside-out optical tracking to provide untethered six degrees of freedom (6DoF). 6DoF refers

to translation through three dimensions, and rotation on three axes. The Quest has four wide-angle,

monochromatic cameras; one on each corner of the front of the headset. The field of view of each camera

is angled in such a way that there are overlapping regions, which is crucial for stable spatial tracking. The

two upper cameras, which are rarely obscured, can track ceilings while the two lower cameras can track

the floor. All four cameras can be used for tracking walls and other objects. These same cameras are used

to track the user’s hands.

3.1.2 Hand Tracking

Oculus is a subsidiary of Facebook. It was able to source photographic data from millions of devices

with Facebook owned applications installed. These images were used to train neural networks to

recognize hands and fingers. The network was so well trained and computationally optimized that the

15

recognition system could be run on mobile processors, such as the Snapdragon 835 in the Quest. Hand

tracking was released as a beta feature to the Quest in December 2019, along with the API needed for app

development. The API is regularly updated, and functionality is adjusted frequently.

3.1.3 Alternative Solutions

The Quest was selected due to its advantages over other systems such as the Leap Motion Controller.

The LMC is an accessory to VR headsets, meaning that both the headset and LMC would need to be

purchased (see Figure 3.1). An LMC retails for roughly $90 (£70) at time of writing, while the two most

popular compatible headsets, the Oculus Rift and the HTC Vive, retail for roughly $600 (£460) and $700

(£540) respectively. The Quest base model retails for $400 (£310). Both LMC compatible headsets are

tethered devices, meaning they are reliant on high power PCs for graphical processing. The Quest is an

all-in-one device, meaning all processes are executed by the processor in the headset. While this means

the Quest is computationally much less powerful and less graphically capable than the other two headsets,

the Quest has the distinct advantage of being wireless, thereby giving the user more freedom of

movement. Additionally, built-in hand tracking developed and supported by the manufacturer of the

device makes development easier as the systems work together seamlessly. It is not dependent on an

additional API to join hand tracking with the operating system, as well as the API necessary for game

engine integration.

Figure 3.1: HTC Vive Headset with LMC Attached (Ultraleap 2016; Blog.Leapmotion.com)

http://blog.leapmotion.com/leap-motion-htc-vive-faq/

16

3.2 Development Tools

Development of the game was done on a Windows PC with a Ryzen 2700X processor, RTX 2070

graphics card, and 16 GB of RAM.

3.2.1 PC to VR Workflow

A crucial part of the development process was the use of Oculus Link. Oculus Link is a software

which allows the Quest to be used as if it were a tethered headset, much like the Oculus Rift S. The

software is usually used to play PC VR games on Quest. Oculus Link allows for games being run in a

game development platform to be play-tested on the Quest without having to build and deploy the

application.

On February 6, 2020, an update to the Oculus Unity Integration software allowed for Quest hand

tracking to be used in Oculus Link. This means that data generated at playtime could be accessed on the

PC, saved, and manipulated for use in development of the game. Without this system, a gesture

recognition system could not be developed as gestures cannot be saved and given meaning within the

context of the game. The Oculus Quest 16.0 firmware update broke this functionality on April 13, 2020,

effectively killing development of the game. Fortunately, an update to Oculus Unity Integration package

fixed this functionality on April 28th. Development of this project has only been possible for several

months.

3.2.2 Game Engine

The game was developed in Unity. Unity is a game engine and development platform that is free to

use for non-commercial products and small businesses. Unity boasts several advantages such as a built-in

physics engine, support for external packages, and several render pipelines. Unity supports scripts written

in C#, which makes it a flexible platform. One of the greatest advantages of Unity is the Oculus

Integration package which provides the tools needed to use Quest hand tracking in a game. A similar

package is available for the Unreal engine, but Unity was chosen due to prior experience with the

platform.

17

3.2.3 Hand Tracking Compatibility

The Oculus Integration package provides a VR compatible camera system, hand tracking ability in

Unity, hand models and hand management. This means the game will automatically detect hands and

update the hand models each frame. If hand tracking is lost, the hand model is destroyed, and a new hand

model is generated when tracking is resumed (see Figure 3.2). This removes problems that would

otherwise take large amounts of work to fix.

Figure 3.2: Hand Tracking Under Occlusion (Oculus, 2019; Developer.Oculus.com)

Oculus Integration provides data about each hand being tracked. Each hand has a tracking confidence

level, positions, and rotations for 22 “bones” in the hand, whether each finger is pinching (touching the

thumb), and how tight the pinch is (open, close to touching, or touching the thumb). The “bones” refer to

the wrist, each joint in the thumb and fingers, and the thumb and fingertips (see Figure 3.3). These data

points can be used to classify gestures or signs. It may be important to note that using the Oculus

Integration package may be falling out of fashion, with many developers favouring the Unity XR

Interactions Toolkit. The XR Toolkit offers more flexibility and support for multiple headsets and may be

https://developer.oculus.com/design/hands-design-bp/

18

more future proof. However, the XR Toolkit does not offer hand tracking support, so Oculus Integration

was the only available choice for this project.

Figure 3.3: Oculus Integration Bone ID Legend (GowerGames, 2019; Reddit.com)

3.2.4 Modelling and Animation

Modelling and animation for this game was done using Blender. Blender is a free and open-source

tool used for 3D modelling, animation, and many other processes. Some models were taken from

Mixamo, a platform owned by Adobe which provides easy rigging and animation.

https://www.reddit.com/r/OculusQuest/comments/edkp9i/visual_reference_for_hand_tracking_bone_ids/

19

4 Methods

4.1 Planning

Once the tools have been defined, the project turns to development methods. The first step was to

develop a game design document. This is a planning document which outlines the gameplay, goals and

features, mechanics, and art style of the game (see Figure 4.1). Research has shown that L2 ASL learners

struggle with fingerspelling comprehension, so in the early stages of planning, the possibility of a

fingerspelling comprehension challenge was considered. This would consist of having the player watch a

video of a person or 3D avatar fingerspelling a word, and then selecting that word from a list of choices.

However, due to time constraints, this game mode was dropped from the development plan. Instead, it

was decided to focus on fingerspelling production and sign recognition, as this better demonstrates the

strengths and weaknesses of the Quest’s hand tracking.

Figure 4.1: Games Design Document

Ideas for a fingerspelling challenge included simply presenting a written word to the player and

asking them to produce the ASL signs for each letter, or presenting the player with a picture and asking

them to produce the name of the object/animal/etc. This may be more fun but could introduce trouble as

pictures may be interpreted differently (e.g. rabbit vs bunny) and make the game inaccessible to non-

20

English speakers. For this reason, the game deliberately focuses on one player mechanic, sign production.

This keeps the game simple to understand.

The art style was kept simple, both for aesthetic and development reasons. Early ideas included toon

shaders or matte lambert shaders. This game design document proved to be a helpful guide but was

adjusted to respond to user needs as the game evolved.

4.2 Sign Detection

The first challenge of game development was creating a sign detection system. This requires a

technical definition of what a sign is. For 24 signs of the ASL manual alphabet, a sign is the static

position and flex of all fingers and thumb, and the rotation of the wrist. As Geer showed in her research,

wrist rotation is an important part of sign classification, as some signs differ only by wrist rotation, and

two signs (J, Z) are dynamic.

4.2.1 Defining a “Sign”

The Oculus Integration provides global positional and rotational data for each joint in the hand. Using

this information, a data structure can be created which will hold the position of a certain number of joints

in the hand, and the rotation of the wrist. This structure can be called a ‘sign’. Positional data of each joint

can be stored in a list of Vector3s (a data type consisting of three floating point numbers). An important

aspect is that joint data, by default, is returned in global positioning. It is highly impractical to produce a

hand gesture in the exact same global position, so instead joint position should be saved and checked

relevant to the wrist local position, which will always be 0. Rotational data can be stored in the

Quaternion data type. Wrist local rotation will always also be 0, so it must be saved as a global rotation

(see Figure B.2).

4.2.2 Sign Saving and Detection

To test a sign recognition system, there must first be signs to recognize. Signs could be created

manually by inputting data, but this is highly impractical as each sign consists of 70 data points. Instead a

function was written to save the positional data of every joint and the wrist rotation of a specified hand on

21

the frame the function is called. The positional data of each joint is calculated local to the wrist using the

InverseTransformPoint method (see Figure B.3). This system only saves static signs.

The next step is devising a method of detecting these signs. A player is unlikely to ever reproduce a

sign with all joints in the exact same position and wrist rotation as when they saved it, so the system must

allow the user some variation – referred to as “tolerance”. Each joint’s position is compared iteratively to

the equivalent joint position of the sign being checked. If any joint is further than the set tolerance, the

check is stopped. If no joint position fails the distance test, the wrist rotation is checked using a do

product calculation. This equation compares the two quaternions and returns a value between -1 and 1. -1

corresponds to completely opposite quaternions, and 1 corresponds to completely similar quaternions. A

value of 0 corresponds to perpendicular quaternions. The resulting dot product is compared to a rotational

tolerance value. For easier comprehension, the angle tolerance is subtracted from 1 before comparing

against the dot product. If the dot product is greater, the sign is considered produced correctly, and

marked as detected.

4.2.3 Dynamic Signs

Just as video is a sequence of still photos, a sequence of still poses could be saved to constitute a

dynamic sign. Detecting this would be more difficult. Reproducing a motion with accuracy is more

difficult than producing a single hand pose. The system could check all poses through the motion and

consider the sign produced correctly if a certain number of poses met the distance threshold. Rather than

spend time developing and implementing this complex system, I decided to cheat the static sign system I

already had. Thinking of a dynamic sign as a series of still poses, then there must be a final pose. For the

sake of the simplicity, the final pose of both dynamic signs was saved so that by producing the whole

motion, the sign would be detected at the end.

4.2.4 Sign Detection Implementation

Implementing the detection system presents several choices. First, should it check the user’s hands for

signs upon request or continuously? Either is viable but having the system check upon user request may

prove tedious to the player. If they struggle to produce a sign correctly, they will be requesting a check

22

over and over, reducing the game’s fun and slowing down their production rate. Additionally, requesting

a check does not mimic real life sign production. Native signers produce signs quickly and sequentially

without breaks to check if the listener is comprehending each individual letter. So, the “continuously

checking” option is preferred albeit computationally more strenuous (see Figure B.4).

The next choice is whether the system should check for any sign, or only the sign expected to be

produced. Checking for all signs offers the advantage of being able to count how many times signs other

than the expected sign were produced, providing a form of feedback to the player. Checking all signs on

all frames means the game is checking a possible maximum of 22 bones, for 26 signs, 60 times a second.

In testing, the hardware kept up with these demands, so this option was selected as it offers the most

functionality.

4.3 Sign Functionality

For signs to have meaning, as they do in ASL, the game must give each sign its respective function to

execute when detected. Unity Events were a perfect solution for this. Unity Events are customizable

functions which can be invoked when needed. One event can hold multiple functions, meaning they are

flexible and useful for testing purposes. The sign data structure holds a Unity Event, which can be

customized per sign. This means that signs can be used for purposes other than spelling. Signs can be

given functions such as changing colours of an object, raising or lowering volume, turning elements of the

environment off and on, etc. The choice of detecting all signs on all frames also means that signs that are

not appropriate for the current situation could be detected, and their functions could be executed when it

is not convenient for the player. To manage this, a spell-checking system was implemented. This

consisted of a simple comparison of the sign produced to the letter expected (see Figure B.1).

4.4 Gameplay

One level of the fingerspelling challenge consists of five words, each randomly selected from 40-50-

word lists, depending on the level. A string is set equal to the word being proposed, which at the start of

the level is the first word. A null string is created to hold the letters produced by the player. If a player

were to produce an incorrect letter, that letter would need to be removed from the string. Sign language is

23

not used as a typing mechanism, so there is no natural sign for “backspace” or “delete”. Rather than create

a sign for this function, which could also be accidentally detected, I chose to implement a spell checker.

The CheckLetter function compares the letter assigned to the sign against the expected letter of

the word. If the letter is correct, it is added to the string and the checker moves on to the next letter. If the

letter is incorrect, it is discarded. Once all letters have been produced correctly, the checker moves on the

next word and the spelled string is reset to null. Once all 5 words have been spelled correctly, the level

has been completed and the player can be shown a summary of the gameplay.

The gameplay summary shows three statistics:

● Correct letters produced; incremented every time the CheckLetter function returns true

● Incorrect letters produced; incremented every time the CheckLetter function is returned false

● Time taken to complete the level

Two timers ran during the gameplay. The first shows time elapsed since the player was asked to spell

a new word. Every time the player completes a word, the timer is reset. The second is the level timer. It

begins when the level starts, ends when the player completes the last word and is shown in the post-level

summary. Dividing the level timer by the number of correct letters gives a “typing speed”/production rate.

These are good metrics to assess player improvement over time.

4.5 User Interface Design

Figure 4.2: Interaction Range (Oculus, 2019; Developer.Oculus.com)

https://developer.oculus.com/design/hands-design-bp/

24

A particularly tricky challenge in game design for hand tracking apps is user interface. Without

peripherals such as a mouse or controller, there is no familiar way to navigate an interface. Gestures could

be used to navigate through the game, but requires the players to learn new gestures, on top of the ASL

alphabet signs. A trial version of the game tested “physical buttons” in close range of the player which

they can push with their hands (see Figure 4.3). They worked but did not offer haptic feedback. The

sensation of seeing your hand touch, but not feel a button can be unsettling.

Figure 4.3: Implementation of a "Physical" Button in Early Stages of Development

Oculus Integration offers a solution called the Hands Interaction Toolkit (HIT) which includes a ray

casting tool used for far-field interactions (outside of arm’s reach). The ray cast extends from the palm of

the hand and latches on to designated “buttons”. The user can then “click” on the button by tapping their

thumb and index finger together (see Figure 4.4). A small script is added to the far-field buttons to

implement Unity Events functionality. The buttons can change colours when selected, to give the user

confirmation of their selection.

Figure 4.4: Tap-to-Click System Developed by Oculus (Oculus, 2019; Developer.Oculus.com)

https://developer.oculus.com/design/hands-design-bp/

25

4.6 Finishing Touches

With a gesture recognition system, spell checker, and interaction method, we have all the tools

needed to make the game. The game needed a way to teach the player the signs of the ASL manual

alphabet. A full rigged body model was taken from Mixamo, from which only the hands were used. A

library of hand poses for each sign, and animations for the letters J and Z were created inside Blender.

The models were used in both the sign calibration mode, and the practice mode.

26

5 Implementation Results

This chapter provides a succinct description of the finished ASL fingerspelling app and its

functionality and gameplay. The game itself consists of four sections:

I. Main menu

II. Sign calibration

III. Practice mode

IV. Fingerspelling challenge mode

For easier data handling, the entire game is set in one scene, with minor environmental changes for

each mode. The environment is deliberately not physically realistic. The space is encapsulated by a white

skybox with multicoloured spots, at an infinite distance. There is no visible floor or otherwise familiar

environmental features which would suggest scale of distance. A physically unsituated environment

removes the player's curiosity to explore. The player is more likely to remain in the starting position,

which is optimal for gameplay. This abstract space allows the player to focus on the gameplay.

Figure 5.1: Main Menu

27

5.1 Menu

The game launches into the main menu which consists of four large buttons; labelled “Sign

Calibrator”, “Practice”, “Level Select”, and “Quit”. Above the main menu is the game title in large letters,

with hand models above spelling “ASL” (see Figure 5.1). Below the player are two large hands, one left

and one right, placed, respectively. Below each is a label that reads “Set right hand active” or “Set left

hand active”. The right hand is red, and the left hand is blue (see Figure 5.2 and Figure 5.3).

Players notice a beam stemming from each of their palms. These act as a cursor for menu navigation.

When a beam intersects either hand, the hand turns green. By tapping their thumb and index finger

together, the player selects which hand the system should use for sign detection. In development builds,

the active hand is coloured green and the inactive hand is coloured pink. In the final build, a bug prevents

the hands from always being coloured this way but will be correctly coloured when the palms are facing

the player’s face.

Figure 5.2: Set Active Hand Menu

28

Figure 5.3: Player Setting the Right Hand as Active

When the beam intersects any of the four buttons in front of the player, the button turns green to

indicate that it is being selected (see Figure 5.4). Tapping the thumb and index finger together triggers the

event tied to the button, just like clicking with a mouse. This tapping as a click function was designed by

Oculus developers, as touching the thumb and index finger together provides a form of haptic feedback to

the user.

Figure 5.4: Player Using The Main Menu

29

5.2 Sign Calibration

Tapping the “Sign Calibrator” button removes the main menu and loads the calibration scene. The

scene consists of a title which reads “Sign Calibrator”, a hand model and label which show the active

letter to calibrate, two buttons labelled “previous letter” and “next letter”, a button labelled “Save Sign”,

and a button labelled “Main Menu” (see Figure 5.5). The player can hold their active hand in the shape

shown by the model in front of them (see Figure 5.6). Using their inactive hand, they can tap on the save

sign button. This overwrites the data for that sign with the current position and rotation of the active hand.

Upon saving, the hand model is updated to the next letter of the alphabet.

Figure 5.5: Sign Calibrator

If the player wishes to save a certain letter, they may navigate to that letter by using the “previous

letter” and “next letter” buttons. The J and Z hand models each play the respective animation once upon

appearing. If the player wishes to see the animation again, they may move to the next letter and then back

to J or Z. Pressing “next letter” on Z cycles back to A, and vice versa when pressing “previous letter” on

A. After calibrating all letters, the player may choose to return to the main menu by selecting the “Main

Menu” button.

30

Figure 5.6: Player Using The Sign Calibrator

5.3 Practice Mode

The player may then select “Practice” to disable the main menu and launch the practice mode. The

practice mode scene consists of 26 hand models, one for each letter of the alphabet, and their respective

label. Under the letter A is the main menu button. The sign detection system is activated in practice mode.

When the player correctly produces a sign, the letter will spawn in front of the respective hand model and

tumble downwards. After five seconds it disappears. Each hand model serves as reference, so the player

can copy each sign and practice producing the hand form correctly. The spawning letter serves as

feedback to show that the form is being produced correctly (see Figure 5.7 and Figure 5.8).

Figure 5.7: Practice Mode

31

The sign detection algorithm checks wrist rotation, and wrist rotation can only be saved in global

space. This means that if the player were to produce any sign but not be facing forward, the sign would

not be recognized, which in turn means that the player would not be able to face the model of the letter

they are trying to practice. To solve this problem, wrist rotation is ignored in practice mode. This allows

the player to produce signs while facing any direction, but it also means that the system will not be able to

discern perfectly between similar signs such as K and P, or U and H. After practicing until satisfied, the

player may return to the main menu.

Figure 5.8: Player Using the Practice Mode

5.4 Fingerspelling Challenge

The next selection in the list is “Level Select”. This button brings up a new menu with six options:

“Level 1” through “Level 5” and a main menu button. Selecting any of the level buttons disables this

menu and activates the fingerspelling challenge scene. The fingerspelling challenge scene consists of a

level title, a display of the word to spell, a display of the users spelling progress, a timer, a “skip letter”

button, a “skip word” button, and a main menu button (see Figure 5.9). The sign detection system is

activated upon the loading of the level. Level 1 consists of common first names, level 2 is US State

names, level 3 is countries of the world, level 4 is global cities, and level 5 is names of flowers.

32

Figure 5.9: Fingerspelling Challenge

Each level asks the player to spell five words - such as “TOKYO” and “GERANIUM”. When a

player produces the correct letter, a positive tone is sounded, and the letter is added to the display in front

of them (see Figure 5.10). This is immediate positive feedback to the player. Once the player completes a

word another positive tone is played, and the next word is loaded. Once the player completes the level, a

positive jingle is played, and the player is presented with the level summary.

If the player is struggling with a certain letter, they may press the “skip letter” button. This adds the

correct letter to the word and lets the player move on to the next letter. This letter is not added to the

count of correct letters produced. If a player is struggling with a word, they may press the “skip word”

button. This disregards the current word and loads the next word. None of the remaining letters of that

word are added to the count of correct letters produced. These functions relieve player frustration if the

game is not detecting signs properly.

The level summary scene shows the player how many letters they produced correctly, how many

incorrect letters were detected, and how long (in seconds) it took to complete the level. On the right side

the level high score from the current play session is displayed. From this scene the player may either

return to the level select menu to play again or return to the main menu.

33

Figure 5.10: Player Playing the Fingerspelling Challenge

5.5 Issues

There are inevitably a few bugs still present in the final build. Ideally each of the player’s hands

should be pink or green, but when tracking confidence is not high, the hands are coloured grey.

The ray cast beam latches on to buttons, which helps relieve misclicks to hand instability. All buttons

in the main menu disappear after clicking, but the beam remains latched to the position of the now

invisible button. If the player clicks again without moving their hand first, the function will be called

again. This can be especially detrimental to the game if the player tries to navigate menus with two hands.

For instance, say the player hovers over “Sign Calibrator” with their right hand, and “Practice” with their

left hand. Clicking with the right hand will launch the sign calibrator scene, making the “Practice” button

disappear. However, the left-hand beam will stay latched to this position. Clicking with the left hand will

launch the practice mode, thereby having both the calibration scene and the practice scene active at the

same time. These things can be avoided by having the player move their hands after clicking any button,

but players might forget to do this sometimes.

34

Another “bug” pertains to the scoring system and the timer. The level timer runs from the loading of

the level until the level summary scene is loaded. The timer does not carry any penalty for selecting the

“next word” button. This means that the player can select “next word” five times and complete the level

with a fast time. The game does not differentiate this time from levels that were completed by spelling all

letters. One solution could be implemented, in that by pressing “next word” a 20 second penalty could be

added to the level timer. This would be an easy fix to implement, only 2 lines of code, but I had

overlooked this issue before publishing the game. These bugs are very minor, but conceivably may induce

some player frustration at certain points.

35

6 Evaluation

This project sought to produce a game with a sign recognition system and hence to determine the

capabilities and limitations of a hand tracking application for ASL education. There are several

approaches to evaluate the game’s usefulness and pedagogical efficacy.

6.1 Approaches

6.1.1 In-person Medium Scale Testing

The first approach is in-person, medium scale user testing. This would consist of recruiting twenty to

thirty participants to play the game one or two times. The testing would take place in an academic setting,

using dedicated Quest hardware, a PC to record gameplay, and cameras to record the participants hands

while playing. Participants would likely be fellow university students and staff who would likely have

experience with VR technologies, and so require less training to play the game. Participants would be

introduced to the hardware and the game before exploring the features of the game for half an hour. After

playing the game, the participant would complete a System Usability Scale (SUS) survey and a

questionnaire to gauge their impression of the game. Such survey data can be used to estimate the

usefulness of the game. By recording the gameplay and hands of the user, the tracking accuracy can be

evaluated, as well as signs that do and do not work well with the recognition system.

6.1.2 Online Testers

The second approach is release to the public through online platforms. The official Quest store has

strict content guidelines and does not permit development builds. Fortunately, SideQuest, a third-party

platform which allows users to upload home-made games and share them with other Quest users, is a

good alternative. This is the de facto preferred release method for Quest developers and users. Alongside

this posting, the game can be advertised through popular social media sites. These platforms allow users

to respond to posts with comments, which can be used for feedback collection. Such feedback will show

what general, non-academics think about using the technology for educational purposes.

36

6.1.3 Extended User Testing

The third approach is extended user testing. Ideally this would consist of five to ten participants

reporting to an academic space once a day for one or two weeks. The initial visit would take an hour for

introductions and set ups, but subsequent visits would take only 20 minutes. In each visit, the participant

would play each level of the game one time and the results would be recorded (see key metrics in Table

6.1). By recording these results for each test over a two-week period, player progression can be tracked.

6.2 Limitations

Currently, the world is facing an unprecedented global health crisis. Due to the Covid-19 virus,

circumstances are abnormal and physical interaction is limited. I had to leave the Glasgow School of Art

and return to the USA, so access to hardware was shut off. There is a responsibility to adhere to health

guidelines. For these reasons, the first approach of medium-scale in-person testing is not possible. Having

multiple people use one headset poses serious health risks in current times. Instead, the second approach

and a modified version of the third approach was used.

Testing in these circumstances is difficult, and so evaluation will not be as extensive as ideally

desired. Use of the software is limited to those who own personal Quest headsets. Distribution of the

game and collection of feedback will be “remote” rather than “in-person”. While this approach is useful,

it may introduce certain biases and errors. Feedback is entirely self-reporting, so is likely biased to those

with an interest in hand tracking technology and ASL. However, this could also have the advantage that

the users have knowledge of systems and can offer constructive criticism.

Regardless of limitations due to current health guidelines, the evaluation conducted is a solid

reflection of practical and analytical knowledge. The processes taken mirror those that would have been

used in normal circumstances. Data has been gathered and processed in accordance with standard

academic practice. Results found using these practices are indicative of how results would look with

further study. Furthermore, extended testing would be easily produced as conditions return to normal.

37

6.3 Feedback from Online Users

6.3.1 SideQuest

The game was posted to SideQuest on July 10th, 2020 along with a video tutorial and link to a SUS

survey. As of July 30, the game has been downloaded over 300 times. Launch numbers are not reported,

so it is uncertain how many downloaders have played the game. Over two weeks, the game received five

ratings. Four users rated the game five-stars (out of five), and one rated the game four-stars. All five-star

ratings noted the usefulness of the game and its potential for application in educational settings. One user

wrote “Fantastic application. Hopeful to see a full ASL version in the future. I used to practice a little

ASL fingerspelling but haven't done it in maybe 10 years. After only around 30 mins in and I can already

do all the signs again and am successfully spelling words at a decent pace.” The four-star rating notes the

inability of the hand tracking to accurately represent certain signs, specifically ‘R’ and ‘N’. Overall, the

average rating of the app is 4.8 out of 5.

6.3.2 Reddit

A promotional post was submitted to the Oculus Quest forum on Reddit. The post garnered a score of

487 points, with a 99% upvote ratio. The post received 22 positive comments. 7 of these specifically

mentioned the game as a useful tool for ASL acquisition. One commenter posted “Holy crap this is

exciting! When I heard about hand tracking, I instantly thought about how I wanted to learn American

Sign language!”, while another wrote “Not only will this help spread sign language it’s an amazing

learning tool.” The remaining fifteen positive comments noted that the game was cool, a good idea, or

looked enjoyable. Other comments on the post were questions about the gameplay or how to access the

game. One user offered a suggestion that when the player has trouble producing a certain sign, the game

should show them how to produce that sign. None of the comments were critical or negative.

6.3.3 Twitter

On July 18th, a user responded to the game’s Twitter link with feedback and a video of their

gameplay. This user describes themselves as deaf. The user reported that they enjoyed the sign calibration

system and that “it should be standard for any ASL based app.” The user also noted the difficulty of

38

producing the signs for ‘R’, ‘M’, and ‘N’. Finally, the user reported that they struggled with the menu

implementation and would prefer a physical touch-based menu system.

The footage uploaded by this user gives valuable insight to the system’s compatibility with native

ASL use. The user was able to complete two levels, producing all letters requested. The user produced 23

correct signs in 23.1 seconds on level one, and 40 correct signs in 45.1 seconds on level two. This

produces the following statistics, seen in Table 6.1.

Table 6.1: Resulting Statistics of a Play Session from a Native ASL User

Stat Level 1 Level 2 Average

Correct letters produced 23 40 31.5

Correct letters expected 23 40 31.5

Incorrect letters

detected 27 63 45

Time taken per level 23.1 45.1 34.1

Production Score 1.0000 1.0000 1.0000

Accuracy 0.4600 0.3883 0.4242

Ratio 1.1739 1.5750 1.3745

Production Rate 1.004 1.128 1.066

Results show the user produced signs at a rate of roughly one correct sign per second. This is double

the estimated natural sign production rate of 0.5 seconds per sign. This suggests that the user had to slow

down production for the game to recognize each sign properly. Nonetheless, it is a positive finding that

this user was able to successfully complete two levels at a relatively rapid pace, on what is assumed to be

the first play session of the game. This indicates that the technology is approaching a state in which it

could be used for natural sign language detection.

6.3.4 Online Survey

Online postings of the game were accompanied with a link to a SUS survey and an open response

questionnaire. The SUS survey consists of 10 questions to determine the usability of the game by players'

39

opinions. Each question has five possible responses ranging from “strongly disagree” (-2) to “strongly

agree” (2), with “neither agree nor disagree” at centre (0).

Response to the survey was voluntary. To access the survey, users must go to my personal website. A

reminder to take the survey was placed in the game, and a link was provided in posts on every platform.

Despite achieving 300 downloads and a 4.8-star rating, only two users responded and completed the

survey in full – a slightly disappointing response rate. While this sample size is statistically insignificant,

the consistency between answers, shown in Table 6.2, suggests how results from further testing may

appear.

Table 6.2: SUS Survey Responses

Question User 1 User 2

I think that I would like to use

this system frequently 2 1

I found the system unnecessarily

complex -1 -1

I thought the system was easy to

use 1 2

I think that I would need the

support of a technical person to

be able to use this system -1 -2

I found the various functions in

this system were well integrated 1 1

I thought there was too much

inconsistency in this system -2 -1

I would imagine that most people

would learn to use this system

very quickly 2 2

I found the system very

cumbersome to use -1 -1

I felt very confident using the

system 1 1

I needed to learn a lot of things

before I could get going with this

system -1 -2

40

As these results show, both users found: the game easy to use; the functions in the game were well

integrated; they would like to play the game frequently; and they felt confident using the system. The

users both disagreed: the game was unnecessarily complex; they would need assistance to play the game;

there was too much inconsistency in the game; the game was cumbersome to play they needed to learn a

lot of things before playing the game. The last statement is noteworthy, as it suggests that the players

were able to learn the alphabet from playing the game and did not feel that they needed previous ASL

knowledge to play the game.

The users also responded to the questionnaire which consisted of 9 questions garnering feedback

about the game and relevant information about the responders. Responders indicated that they had at least

one year's experience using virtual reality technologies, and neither had experience with ASL. In

conjunction with results from the SUS, this could indicate the game can be effective for those with no

prior ASL knowledge but is most effective for those who are familiar with VR. Full questionnaire

responses are in Table A.1.

These responses offer some vital insights to the players' experience. One user commented on letters

which the system struggles to detect, namely T, K, P, and N. K and P use the same handshapes in

different orientations, which suggests something about the handshape gives either the hand tracking or the

recognition system some trouble. T and N both involve tucking the thumb under a finger, which occludes

the thumb from view.

One responder reported a bug that the system would not recognize the last letter of a word. This bug

has not been reproducible, so further investigation is needed.

Both users gave suggestions for improving the game. One suggested that the hand models be shown

from multiple angles, which would give the player a better understanding of the sign and how to shape

their hand correctly. Another suggested that the player be prompted with clues during fingerspelling

gameplay, which parrots a comment from Reddit suggesting that the player is given a clue if struggling to

produce a sign.

41

Overall responses were positive. The users enjoyed the game and were able to use it without the need

for technical support. Most importantly the results suggest that the game shows potential for teaching

ASL to new learners.

6.4 In-person testing

A small scale in-person test was conducted to measure the game's pedagogical efficacy. Two

participants with no prior knowledge of ASL played the game five times each to measure how they

improve over prolonged play. Each session consisted of practicing the alphabet and playing all 5 levels of

the game for which statistics were tracked. As levels are randomly generated, lengths of tests will vary.

The key statistics, (i) the ratio of incorrect letters to correct letters (accuracy ratio), and (ii) the production

rate, are less dependent on level length.

As Table A.2 shows, Participant One set a baseline of an average production rate of 5.972 seconds

per letter, and an average accuracy ratio of 2.907 incorrect letters detected for each correct letter

produced. These stats saw a dramatic improvement over the next four tests, finishing with a production

rate of 2.293 seconds per letter, and an accuracy ratio of 1.494. This is an improvement of 62% in

production rate, and 49% in accuracy ratio.

Participant Two set a baseline of an average production rate of 3.444 seconds per letter, and an

average accuracy ratio of 1.451 incorrect letters detected for each correct letter produced. These stats saw

a steady improvement over the next four tests, achieving their lowest production rate of 1.414 seconds per

letter, and an accuracy ratio of 1.1673. This is an improvement of 58% in production rate, and 20% in

accuracy ratio.

By observing the players in real life, we uncovered some strengths and weaknesses of the system. The

sign recognition system excelled with “short” hand forms, such as A, S, and E, when the fingers are

folded, and the hand is closed almost to a fist. The system handled some tall signs – like B, L – with no

finger occlusion well. Signs that include fingers overlapping such as M, N, and T, and signs such as K

and that require the hand to block the view of the fingers proved a little more difficult to the system. The

dynamic signs were not difficult to recognize when produced naturally.

42

Graph 6.1: Production Rate Improvement Over Time

Such a small sample size, in terms of participants and data points/testing sessions, means any

inferences from these tests are not statistically significant. Regardless, trends that arise can be noted, as

they may suggest how results from further testing may appear. The graphs demonstrate the rapid

improvement in production rate by both participants before plateauing towards the end. This may occur as

the first few sessions are spent familiarising the player with the ASL alphabet, and the mechanics of the

game. Learning these key aspects brings dramatic improvements in time. Once the player has memorized

the alphabet and is familiar with the mechanics, production rate is limited by the player's ability to

produce signs consistently and anticipate following letters.

43

Graph 6.2: Average Ratio of Incorrect Letters Detected per Correct Letter Produced

The graph of accuracy ratio shows participant one’s improvement over time, similarly to their

production rate, while participant two stayed consistent throughout testing. The two participants finished

with similar figures. In fact, this figure was also that of the native ASL user from Twitter. This suggests

that the sign recognition system has a natural error margin which will always be present. If a game or app

were using this sign recognition system as a typing mechanism, there would be at least one typo for each

correct letter produced. This would be frustrating, so this system could not currently be used for

keyboard-free typing.

6.5 Conclusion

The combination of evaluative evidence suggests the game’s potential as a learning tool for ASL

fingerspelling. The improvement of the in-person participant’s accuracy ratio and production rate over

only 5 sessions of play indicates the game has some pedagogical value. The response from online users

was overwhelmingly positive, which shows the interest from the public for the application of the

technology towards education. The technology recognizes most letters of the alphabet, and while dynamic

letters are not detected “truly”, shortcuts allow them to be recognized. Letters in which fingers occlude

44

each other give the system some trouble but can be detected with adjustments to production form. Having

to make adjustments is not ideal but is similar to speech recognition systems which are able to recognize

American accents yet need adjustments for, say, Indian accents.

Results from an online native ASL user show the system is still not ready for natural recognition, but

reaching this goal draws closer as the technology improves. This game does promote focus on canonical

hand forms which will foster rapid improvement in the short term, just as Geer and Keane found. The tool

may not be perfect for long term development of ASL fingerspelling skills but provides new learners a

base of knowledge and a fun practice tool.

45

7 Conclusion

7.1 Discussion

7.1.1 Achievements

The project has created an “ASL Fingerspeller” game that is on the cutting edge of hand tracking in

VR games. Hand tracking built into VR is still in its early stages, so ASL Fingerspeller is in the first wave

of hand tracking games released to the public. Furthermore, it is one of the first games released to use a

gesture recognition system. The development of the gesture recognition system was dependent on the PC

to VR data transfer system provided by Oculus Link. Hand tracking support was added to Oculus Link in

February 2020, so development of this game has only been possible for several months. It will be exciting

to see what else can be created using these technologies as they become more accessible to developers.

An important feature of the ASL game is that it is customizable and adaptive to the player. This is

especially important for any gesture recognition system, as users will produce gestures differently from

each other. The sign calibration feature of ASL Fingerspeller brings an extra element of accessibility to

the game. Calibrating each sign to the user’s hands makes the game a little bit easier, and a little bit more

enjoyable.

Another important feature of ASL Fingerspeller is that it is socially useful. The app provides an

interesting first look at American Sign Language, showing off one aspect of the language which is easy

for English speakers to understand. Based on the response from online users, the game is fun and

interesting for VR enthusiasts who have had little experience with ASL. While the game will not provide

them all the knowledge and ability needed for sign language communication, it will get them started on

their journey, and provide a fun practice tool for one part of the language. Additionally, results from in-

person testing suggest that the game will help them improve their fingerspelling ability. Most importantly,

the fun of the game will hopefully spark an interest in ASL, encouraging the player to take further

lessons.

46

7.1.2 Limitations

As leading edge as the ASL Fingerspeller game is, there are limitations that come with the

technology. Hand tracking technology has improved since the release of the LMC yet even with four

cameras, the Quest still struggles to track fingers under occlusion. Because of this, signs such as letter M,

N, R, and T are not properly represented by the virtual hands. Dynamic signs are not recognized based on

their motion, but rather by fitting one pose in a sequence. This is not a true representation of these signs,

so another form of detection system is needed to recognize and discern between dynamic gestures.

Footage of gameplay from a native ASL user showed that the system was not ready to recognize

fingerspelling at the fast rate of a “natural” signer. The system seems to have a natural error margin which

makes it unusable as a typing mechanism. Unfortunately, response rate was low and due to Covid-19

health guidelines, testing was limited. Inferences from the evaluation are not statistically significant.

Further testing is needed to truly test the pedagogical efficacy of ASL Fingerspeller.

7.1.3 ASL Fingerspeller

ASL Fingerspeller is a fun and functional tool, but there is room for improvement. Further work on

this project would include more development of the data management in the game. Saving data to the

local drive proved to be quite tricky on the Quest. If this issue can be solved, persistent data systems can

be implemented. This would include saving player profiles so multiple people can take turns using the

same Quest, saving signs so that calibration is needed only once, and saving high scores so players can

track their progress over time.

Other improvements could include the development of a dynamic sign recognition system. Such a

system could be repurposed for sign language vocabulary, as many ASL signs require both a hand shape

and a specific motion. In accordance with previous research, the inclusion of a machine learning

algorithm could prove useful in such a system. Finally, fingerspelling comprehension proves to be a

greater challenge to L2 ASL learners than fingerspelling production. A game mode in which players

watch an avatar fingerspell and identify the word spelled could be a helpful tool in improving

fingerspelling comprehension. Such a game mode could be networked multiplayer, prompting one player

47

to spell a word and the other to identify it. Multiplayer versions of ASL games could also prove to be a

useful tool in L2 ASL education.

7.1.4 Other Uses

The development methods used in ASL Fingerspeller could be of use for other areas in game or app

development. Gesture recognition is applicable in a wide variety of games, ranging from simple games

such as rock paper scissors to magic-based RPGs to dance/rhythm games. One such educational

implementation in rhythm gaming could be musical instrument instruction. A hand tracking game using

“air-guitars” or “air-trumpets” could provide new learners with a new and exciting way to practice the

motions needed to play such instruments.

Another area of use might be in augmented or mixed reality applications with no hand-held

peripherals. Gestures could prove to be a natural method of interaction, used for purposes such as volume

control, menu navigation, text or numerical input, environment manipulation, etc. Environment

manipulation could be used for interior design focused apps, which would allow users to move, resize, or

rotate superimposed pieces of furniture. Gesture recognition opens a whole new world of possibilities and

human-computer interactions.

7.2 Conclusion

This project has provided answers to the questions posed earlier. Optical hand tracking in virtual

reality in its current state does provide a platform for ASL education. The development of ASL

Fingerspeller and evaluation of the game highlighted the strengths of the Quest’s hand tracking system.

The game was able to successfully teach the ASL alphabet to participants in the research and improved

their fingerspelling ability over a short period of time. The system excelled with simple signs that

resemble closed fists or pointing gestures but struggles with more complex signs that require intricate

finger positions. Still, users were able to produce all signs in a way that the system could recognize.

Investigation into how ASL users would interpret the production of signs in this manner could give

further insight into the strengths and weaknesses of ASL Fingerspeller.

48

Hand tracking is sufficient for many static signs and using shortcuts allows dynamic signs to be

recognized as well. The limitations of the system include loss of tracking due to occlusion. Fingers or

hands crossing prevents accurate tracking and disrupts the virtual representation of the user’s hands. This

limitation prevents certain signs from being represented in VR, and as such the platform is not ready for

intensive ASL education. Solutions for resolving occlusion could include external cameras to provide

more optical coverage. Additionally, the development of a dynamic gesture recognition system could

broaden the range of possibilities for the use of ASL in VR. Despite these shortcomings, the platform is

ready for ASL education in small lessons, such as the alphabet, numbers, and some one-handed signs. The

platform could be creatively exploited for a beginner’s approach to ASL.

However the technology is used, it is clear to see that it is fun. Hand tracking in virtual reality is a

brand new and exciting way to interact with a computer system. The possibilities of its application are

extensive. Applications in the future can take advantage of gesture recognition, physically based

interactions, or hands as a controller to produce creative and entertaining new types of games.

Development of the technology has been rapid, extending accessibility in the past few years. Greater

accessibility will lead to developers finding more creative uses for the technology, attracting more users

to the platform. Hopefully, more development will lead to more games which will lead to more players

learning, doing socially useful activity, and ideally having some fun along the way.

49

References

Bouzid, Y. et al. (2016) ‘Using educational games for sign language learning - A signwriting learning

game: Case study’, Educational Technology and Society, 19(1), pp. 129–141.

Cheok, M. J., Omar, Z. and Jaward, M. H. (2017) ‘A review of hand gesture and sign language

recognition techniques’, International Journal of Machine Learning and Cybernetics. Springer Berlin

Heidelberg, 10(1), pp. 131–153. doi: 10.1007/s13042-017-0705-5.

Chuan, C. H., Regina, E. and Guardino, C. (2014) ‘American sign language recognition using leap

motion sensor’, Proceedings - 2014 13th International Conference on Machine Learning and

Applications, ICMLA 2014. IEEE, pp. 541–544. doi: 10.1109/ICMLA.2014.110.

Clark, A. and Moodley, D. (2016) ‘A system for a hand gesture-manipulated virtual reality

environment’, ACM International Conference Proceeding Series, 26-28-Sept. doi:

10.1145/2987491.2987511.

Fok, K. Y. et al. (2015) ‘A Real-Time ASL Recognition System Using Leap Motion Sensors’,

Proceedings - 2015 International Conference on Cyber-Enabled Distributed Computing and Knowledge

Discovery, CyberC 2015. IEEE, pp. 411–414. doi: 10.1109/CyberC.2015.81.

Geer, L. C. (2016) ‘Teaching ASL fingerspelling to second-language learners: Explicit versus implicit

phonetic training (The University of Texas at Austin, 2016)’, Sign Language and Linguistics (Online),

19(2), pp. 280–284. doi: 10.1075/sll.19.2.07gee.

Geer, L. C. and Keane, J. (2018) ‘Improving ASL fingerspelling comprehension in L2 learners with

explicit phonetic instruction’, Language Teaching Research, 22(4), pp. 439–457. doi:

10.1177/1362168816686988.

Hung, H. T. et al. (2018) ‘A scoping review of research on digital game-based language learning’,

Computers and Education. Elsevier, 126(May), pp. 89–104. doi: 10.1016/j.compedu.2018.07.001.

Keane, J. and Geer, L. C. (2014) ‘Understanding fingerspelling perception Results ’:, 22(6), p. 3278.

50

Mapari, R. B. and Kharat, G. (2016) ‘American static signs recognition using leap motion sensor’,

ACM International Conference Proceeding Series, 04-05-Marc, pp. 1–5. doi: 10.1145/2905055.2905125.

NIH (2019) ‘American Sign Language’. Bethesda: NIDCD. doi: 10.4135/9781412957403.n31.

Quinto-Pozos, D. (2011) ‘Teaching American sign language to hearing adult learners’, Annual

Review of Applied Linguistics, 31, pp. 137–158. doi: 10.1017/S0267190511000195.

Reinhardt, J. and Sykes, J. M. (2012) ‘Conceptualizing Digital Game-Mediated L2 Learning and

Pedagogy: Game-Enhanced and Game-Based Research and Practice’, Digital Games in Language

Learning and Teaching, pp. 32–49. doi: 10.1057/9781137005267_3.

Snoddon, K. (2017) ‘Uncovering translingual practices in teaching parents classical ASL varieties’,

International Journal of Multilingualism. Taylor & Francis, 14(3), pp. 303–316. doi:

10.1080/14790718.2017.1315812.

Su, S. A. and Furuta, R. K. (1998) ‘VRML-based representations of ASL fingerspelling on the

World-Wide Web’, Annual ACM Conference on Assistive Technologies, Proceedings, pp. 43–45. doi:

10.1145/274497.274506.

Sykes, J. M. (2018) ‘Digital games and language teaching and learning’, Foreign Language Annals,

51(1), pp. 219–224. doi: 10.1111/flan.12325.

Ultraleap (2019) Leap Motion Controller. Available at: ultraleap.com/product/leap-motion-

controller/.

51

Referenced Software and Games

• Blender

o 2020. Blender v2.83. Blender Foundation. [software] Available at:

<https://www.blender.org/>

• Kingdom Hearts

o Square Enix, 2002. Kingdom Hearts. Disney Interactive Studios. [video game] Available

at: <https://www.kingdomhearts.com/>

• Minecraft

o Mojang Studios, 2011. Minecraft. Xbox Game Studios. [video game] Available at:

<https://www.minecraft.net/>

• Mixamo

o 2020. Mixamo. Adobe Systems Incorporated. [software] Available at:

<https://www.mixamo.com/#/>

• Oculus Integration

o 2020. Oculus Integration v16.0. Facebook Technologies, LLC. [software] Available at:

<https://support.oculus.com/release-notes/> and

<https://assetstore.unity.com/packages/tools/integration/oculus-integration-

82022#version-current>

• Pokémon Go

o Niantic Inc., 2016. Pokémon Go. The Pokémon Company. [video game] Available at:

<https://www.pokemongo.com/>

• Portal 2

o Valve Corporation, 2011. Portal 2. Valve Corporation. [video game] Available at:

<https://www.thinkwithportals.com/>

• Skyrim

o Bethesda Softworks LLC, 2011. The Elder Scrolls V: Skyrim. Zenimax Media. [video

game] Available at: <https://elderscrolls.bethesda.net/en/skyrim>

• Unity

o 2019. Unity 2019.3.11f1. Unity Technologies. [software] Available at:

<https://unity.com/>

• Unreal

o 2004. Unreal. Epic Games. [software] Available at: <https://www.unrealengine.com/>

https://www.blender.org/
https://www.kingdomhearts.com/
https://www.minecraft.net/
https://www.mixamo.com/#/
https://support.oculus.com/release-notes/
https://assetstore.unity.com/packages/tools/integration/oculus-integration-82022#version-current
https://assetstore.unity.com/packages/tools/integration/oculus-integration-82022#version-current
https://www.pokemongo.com/
https://www.thinkwithportals.com/
https://elderscrolls.bethesda.net/en/skyrim
https://unity.com/
https://www.unrealengine.com/

52

List of Third-Party Materials Used

Table R.1: Third Party Materials Used

Asset Use Sourced From

little_robot_sound_factory_Jin

gle_Win_Synth_00.mp3

Word complete sound effect in

game

ZapSplat.com

sound_ex_machina_Button_Bli

p.mp3

Button press/click sound effect

in game

ZapSplat.com

zapsplat_multimedia_alert_noti

fication_glassy_high_pitched_s

hort_positive_001_42348.mp3

Correct letter sound effect in

game

ZapSplat.com

zapsplat_multimedia_game_so

und_synth_digital_tone_beep_

005_38537.mp3

Letter spawn sound effect in

game

ZapSplat.com

zapsplat_multimedia_game_to

ne_harp_warm_positive_correc

t_win_002_50713.mp3

Level complete sound effect in

game

ZapSplat.com

Ybot.fbx Hand model to demonstrate

signs in game

Mixamo.com

Xbot.fbx Hand model to demonstrate

signs in game

Mixamo.com

Oculus Integration Player hand models, interaction

methods, hand tracking

capabilities, VR integration for

game development

Unity Asset Store

Image of Quest headset Image in report Amazon.com

Image of ASL fingerspelling

alphabet

Image in report NIDCD.NIH.gov

Image of Quest hand tracking Image in report Oculus.com

Image of Vive with LMC

attached

Image in report Leapmotion.com

Image of hand tracking under

occlusion

Image in report Developer.Oculus.com

Diagram of Oculus Integration

bone ID legends

Images in report Reddit.com

Diagram of close-Range

Interaction

Image in report Developer.Oculus.com

Diagram of Tap-to-click

system developed by Oculus

Image in report Developer.Oculus.com

https://www.zapsplat.com/music/alert-prompt-win-positive-tone-000/
https://www.zapsplat.com/music/button-blip/
https://www.zapsplat.com/music/alert-or-notification-tone-glassy-high-pitched-and-short-with-a-positive-feel-version-1/
https://www.zapsplat.com/music/game-sound-bright-synth-digital-tone-beep-5/
https://www.zapsplat.com/music/game-tone-warm-harp-positive-correct-or-win-2/
https://www.mixamo.com/#/?page=1&query=Y+Bot&type=Character
https://www.mixamo.com/#/?page=1&query=X+Bot&type=Character
https://assetstore.unity.com/packages/tools/integration/oculus-integration-82022
https://images-na.ssl-images-amazon.com/images/I/71nK%2BJjLzzL._SL1500_.jpg
https://www.nidcd.nih.gov/health/american-sign-language-fingerspelling-alphabets-image
https://www.oculus.com/blog/introducing-hand-tracking-on-oculus-quest-bringing-your-real-hands-into-vr/?locale=en_GB
http://blog.leapmotion.com/leap-motion-htc-vive-faq/
https://developer.oculus.com/design/hands-design-bp/
https://www.reddit.com/r/OculusQuest/comments/edkp9i/visual_reference_for_hand_tracking_bone_ids/
https://developer.oculus.com/design/hands-design-bp/
https://developer.oculus.com/design/hands-design-bp/

53

Appendix A. User Evaluations Results

Table A.1: Open Ended User Responses from Online Survey

Question User 1 User 2

What did you

like about the

game?

I've always wanted to learn ASL, and

this was a super simple way to get

started! It is fun and easy to use

What did you

dislike about the

game?

There were a few letters that I simply

could not get recognized, namely t, k, p,

and n.

What worked

well in the

game?

The recognition system works pretty

well, except for the few letters I listed

above... I think it is effective to learn ASL

What did not

work well in the

game?

Occasionally, the game simply would

not take the last letter of a word, no

matter how hard I tried, though this was

probably user error.

How would you

improve the

game?

Sometimes, it was difficult to see exactly

how each letter is formed; perhaps

slowly turning around the example

hands would help with that?

On another note, it would help if for the

practice, you could select a letter

individually to highlight and practice. Maybe with some clues in the gameplay

Did you learn

anything by

playing this

game? Do you

think this game

would be

effective in

improving your

fingerspelling

ability?

I learned more ASL in half an hour than

I did in the last ten years, so well done!

Very effective!

Yes

How much

experience do

you have with

Virtual Reality

VR? How much

experience do

you have with

hand tracking in

VR?

In terms of my experience with VR, I

consider myself a veteran at this point: I

got my start with the Oculus Rift years

ago and have recently upgraded to a

Quest. I recently clocked in 2,000 hours

on Steam and have some limited

experience with Oculus Quest app

development in Unity.

I've also had Hand Tracking on when

available since the day it was added to

the experimental features tab and have

produced some of my own hand-tracked

content via Unity.

1 year of experience with VR and a few

months with hand tracking

54

Do you have any

previous ASL

knowledge?

Please share

your level of

proficiency

Absolutely none! I just started with it

when I loaded up your app! No

Please use this

box to say

anything else

you would like to

tell me about

ASL

Fingerspeller.

Very interesting concept! I think as hand

tracking improves, the few hiccups I had

will mostly get smoothed out, so very

excited!

55

Table A.2: In-person User Testing Results

Legend

• CLP – Number of correct letters produced

• CLE – Number of correct letters expected

• ILP – Number of incorrect letters expected

• Time – Time taken to complete the level in seconds

• Production Score – Number of correct letters produced divided by number of correct letters

expected

• Accuracy – Number of incorrect letters produced divided by the sum of incorrect letters produced

and correct letters produced

• Ratio – Number of incorrect letters produced divided by the number of correct letters produced

• Production rate – Time taken to complete the level divided by correct letters produced

Test 1 CLP CLE ILP Time

Producti

on Score Accuracy Ratio

Producti

on Rate

Level 1

User 1 23 24 73 235.6 0.9583 0.2396 3.1739 10.243

User 2 24 26 51 132.6 0.9231 0.3200 2.1250 5.525

Level 2

User 1 41 42 126 199.1 0.9762 0.2455 3.0732 4.856

User 2 30 32 52 110.2 0.9375 0.3659 1.7333 3.673

Level 3

User 1 34 34 100 218.2 1.0000 0.2537 2.9412 6.418

User 2 32 32 28 63.5 1.0000 0.5333 0.8750 1.984

Level 4

User 1 41 43 98 226.2 0.9535 0.2950 2.3902 5.517

User 2 46 46 48 101.2 1.0000 0.4894 1.0435 2.200

Level 5

User 1 46 46 136 130 1.0000 0.2527 2.9565 2.826

User 2 42 42 62 161.2 1.0000 0.4038 1.4762 3.838

Average

User 1 37 37.8 106.6 201.82 0.9776 0.2573 2.9070 5.972

User 2 34.8 35.6 48.2 113.74 0.9721 0.4225 1.4506 3.444

Test 2 CLP CLE ILP Time

Producti

on Score Accuracy Ratio

Producti

on Rate

Level 1

User 1 28 28 40 69.3 1.0000 0.4118 1.4286 2.475

User 2 25 26 29 73.3 0.9615 0.4630 1.1600 2.932

Level 2

User 1 28 32 71 96.9 0.8750 0.2828 2.5357 3.461

User 2 36 37 43 76.8 0.9730 0.4557 1.1944 2.133

Level 3 User 1 32 33 55 107.7 0.9697 0.3678 1.7188 3.366

56

User 2 36 37 49 92.3 0.9730 0.4235 1.3611 2.564

Level 4

User 1 39 43 94 286.2 0.9070 0.2932 2.4103 7.338

User 2 42 42 62 77.1 1.0000 0.4038 1.4762 1.836

Level 5

User 1 36 39 95 136.2 0.9231 0.2748 2.6389 3.783

User 2 50 50 94 107.1 1.0000 0.3472 1.8800 2.142

Average

User 1 32.6 35 71 139.26 0.9350 0.3261 2.1464 4.085

User 2 37.8 38.4 55.4 85.32 0.9815 0.4187 1.4143 2.321

Test 3 CLP CLE ILP Time

Producti

on Score Accuracy Ratio

Producti

on Rate

Level 1

User 1 19 22 33 64.8 0.8636 0.3654 1.7368 3.411

User 2 26 26 33 68.8 1.0000 0.4407 1.2692 2.646

Level 2

User 1 37 37 80 65.3 1.0000 0.3162 2.1622 1.765

User 2 36 36 71 82.1 1.0000 0.3364 1.9722 2.281

Level 3

User 1 31 33 66 77 0.9394 0.3196 2.1290 2.484

User 2 30 30 34 52.2 1.0000 0.4688 1.1333 1.740

Level 4

User 1 39 40 69 122.9 0.9750 0.3611 1.7692 3.151

User 2 44 44 67 92.7 1.0000 0.3964 1.5227 2.107

Level 5

User 1 37 37 47 52.5 1.0000 0.4405 1.2703 1.419

User 2 45 45 60 91.9 1.0000 0.4286 1.3333 2.042

Average

User 1 32.6 33.8 59 76.5 0.9556 0.3606 1.8135 2.446

User 2 36.2 36.2 53 77.54 1.0000 0.4142 1.4462 2.163

Test 4 CLP CLE ILP Time

Producti

on Score Accuracy Ratio

Producti

on Rate

Level 1

User 1 22 23 33 51.4 0.9565 0.4000 1.5000 2.336

User 2 30 30 36 45.8 1.0000 0.4545 1.2000 1.527

Level 2

User 1 42 43 89 111 0.9767 0.3206 2.1190 2.643

User 2 47 47 54 52.4 1.0000 0.4653 1.1489 1.115

Level 3

User 1 32 33 74 125.3 0.9697 0.3019 2.3125 3.916

User 2 33 33 44 56.2 1.0000 0.4286 1.3333 1.703

57

Level 4

User 1 42 42 88 102.4 1.0000 0.3231 2.0952 2.438

User 2 36 36 35 49.3 1.0000 0.5070 0.9722 1.369

Level 5

User 1 42 44 88 144.4 0.9545 0.3231 2.0952 3.438

User 2 44 44 52 59.7 1.0000 0.4583 1.1818 1.357

Average

User 1 36 37 74.4 106.9 0.9715 0.3337 2.0244 2.954

User 2 38 38 44.2 52.68 1.0000 0.4628 1.1673 1.414

Test 5 CLP CLE ILP Time

Producti

on Score Accuracy Ratio

Producti

on Rate

Level 1

User 1 27 27 21 49.9 1.0000 0.5625 0.7778 1.848

User 2 22 22 18 29.5 1.0000 0.5500 0.8182 1.341

Level 2

User 1 38 39 73 111.3 0.9744 0.3423 1.9211 2.929

User 2 42 42 54 54.6 1.0000 0.4375 1.2857 1.300

Level 3

User 1 35 35 63 86.9 1.0000 0.3571 1.8000 2.483

User 2 31 31 49 44.4 1.0000 0.3875 1.5806 1.432

Level 4

User 1 37 37 50 84.9 1.0000 0.4253 1.3514 2.295

User 2 42 42 56 54.4 1.0000 0.4286 1.3333 1.295

Level 5

User 1 44 44 71 84.1 1.0000 0.3826 1.6136 1.911

User 2 38 38 78 68.6 1.0000 0.3276 2.0526 1.805

Average

User 1 36.2 36.4 55.6 83.42 0.9949 0.4140 1.4928 2.293

User 2 35 35 51 50.3 1.0000 0.4262 1.4141 1.435

58

Appendix B. Code

public void CheckLetter(string letter)//check if letter just produced is the right let

ter

 {

 if(spellCheck)

 {

 if(letter[0].Equals(toSpell[letterIndex]))//if first char of string associ

ated with produced sign matches expected letter

 {

 AddLetter(letter);//add the letter to the spelled word

 }

 else

 {

 ilp++;

 }

 }

 }

void AddLetter(string letter)//check if word is fully spelled

 {

 audioManager.Play("Correct Letter");

 spelled += letter;//add the letter to the spelled word

 letterIndex++;//go to the next letter

 clp++;

 if(spelled.Equals(toSpell))//if spelled word matches word to spell

 {

 NextWord();//go to next word

 }

 }

public void NextWord()//go to next word

 {

 audioManager.Play("Next Word");

 wordTimer = 0;

 spelled = null;//reset word to spell

 letterIndex = 0;//reset letter, go to start of word

 wordIndex++;//go to next word

 if(wordIndex == dictionary.Count)//if that was the last word

 {

 OnLevelComplete.Invoke();//invoke end of level event

 audioManager.Play("Level Complete");//play the end level sound

 levelActive = false;//turn off level active

 if(ilp < highScores[levelIndex].x)//if fewer incorrect letters detected

 {

 highScores[levelIndex].x = ilp;

 }

 if(levelTimer < highScores[levelIndex].y)//if less time taken

 {

 highScores[levelIndex].y = levelTimer;

 }

 }

 ToSpellUpdate();//update word to spell

 }

Figure B.1: Spellchecker Code

59

[System.Serializable]

public class Sign

{

 public string name;//name of the sign

 public List<Vector3> fingerPositionalData;//list hold the positional data for each

 bone in the hand

 public Quaternion rootRotation;//holds the rotational data of the root of the hand

 (the wrist)

 public UnityEvent OnDetect;//event to execute when the sign is recognized

 public Sign DeepCopySign(Sign oldSign)

 {

 Sign newSign = new Sign();

 newSign.name = oldSign.name;

 newSign.fingerPositionalData = oldSign.fingerPositionalData;

 newSign.rootRotation = oldSign.rootRotation;

 newSign.OnDetect = oldSign.OnDetect;

 return newSign;

 }

}

Figure B.2: Code Implementation of a "Sign"

public void Overwrite()//function for overwriting the finger data of a sign

 {

 Sign sign = activeSign;

 List<Vector3> positionalData = new List<Vector3>();//new list for positional d

ata of bones

 foreach(var bone in activeHand.Bones)//run through all bones in the hand

 {

 positionalData.Add(activeHand.transform.InverseTransformPoint(bone.Transfo

rm.position));//store positional data

 }

 sign.fingerPositionalData = positionalData;//overwrite the positional data wit

h the new data

 sign.rootRotation = activeHand.Bones[1].Transform.rotation;//overwrite the rot

ation data with the new (current) rotation

 Debug.Log("Active Profile (index): " + profiles[profileIndex].name);

 Debug.Log("Active Profile (profile): " + activeProfile.name);

 Debug.Log("Active sign (index): " + profiles[profileIndex].rightHandSigns[sign

Index].name);

 Debug.Log("Active sign (sign): " + activeSign.name);

 //activeSign = sign;//overwrite the active sign

 if(isLeft)

 {

 profiles[profileIndex].leftHandSigns[signIndex] = sign;

 }

 else

 {

 profiles[profileIndex].rightHandSigns[signIndex] = sign;

 }

 }

Figure B.3: Overwrite Function used in Calibration

60

Sign Recognize()//function that checks current hand position

 {

 Sign currentSign = new Sign();//get current sign

 float currentMin = Mathf.Infinity;//set minimum distance from listed sign

 for(int j = 1; j < activeList.Count; j++)//go through list of saved signs to c

ompare

 {

 float sumDistance = 0;//how far away the current sign is from listed signs

 bool isDiscarded = false;//if the sign doesn't match listed signs

 //compare the current sign to listed signs

 for(int i = 0; i < activeHand.Bones.Count; i++)//iterate through bones

 {

 Vector3 currentPosition = activeHand.transform.InverseTransformPoint(a

ctiveHand.Bones[i].Transform.position);//get current positional data for all bones

 float distance = Vector3.Distance(currentPosition, activeList[j].finge

rPositionalData[i]);//calculate distance from saved bone position

 if(distance > tolerance)//if current sign is not close enough, stop co

mparing, move on to next sign

 {

 isDiscarded = true;

 break;

 }

 sumDistance += distance;//add up the distance of all the bones

 }

 float rotDifference = Mathf.Abs(Quaternion.Dot(activeHand.Bones[1].Transfo

rm.rotation, activeList[j].rootRotation));

 if(spawner.spawn){rotDifference = 1f;}

 if(!isDiscarded && sumDistance < currentMin && rotDifference > (1f - angle

Tolerance))//if the sign is not discarded, close to listed sign, and the wrist rotatio

n is close enough

 {

 currentMin = sumDistance;//set the minimal distance to how close we go

t to the listed sign against which we are comparing

 currentSign = activeList[j];//set the sign to the one against which we

 are comparing

 }

 }

 return currentSign;//return the sign

 }

 void Update()

 {

 if(detect)

 {

 Sign currentSign = Recognize();//check if the sign being produced is a sav

ed sign

 bool recognized = !currentSign.Equals(new Sign());//this tests that the Re

cognize() function returned a listed sign, instead of null

 if(recognized && !currentSign.Equals(previousSign))//check if current sign

 is different from last sign recognized (no repeats)

 {

 previousSign = currentSign;//store the current sign as previous so as

to compare and not repeat

 currentSign.OnDetect.Invoke();//invoke OnDetect

 }

 }

 }

Figure B.4: Sign Detection/Recognition System

